International Journal of Renewable, Green, and Sustainable Energy

  1. Home
  2. Archives
  3. Vol. 1 No. 01 (2024): Volume 01 Issue 01
  4. Articles
International Journal of Renewable, Green, and Sustainable Energy

Article Details Page

ENVIRONMENTAL IMPACT ASSESSMENT OF BIOMASS-DERIVED HYDROGEN PRODUCTION PATHWAYS: A LIFE CYCLE PERSPECTIVE

Authors

  • Prof. Sophie L. Moreau Institute for Life Cycle Assessment and Energy Systems, École Polytechnique, Paris, France
  • Dr. Benjamin K. Mensah Department of Chemical Engineering, University of Cape Coast, Cape Coast, Ghana

DOI:

https://doi.org/10.55640/

Keywords:

Biomass-derived hydrogen, life cycle assessment (LCA), environmental impact

Abstract

The transition to a hydrogen-based energy economy demands thorough evaluation of environmental trade-offs associated with various production pathways. This study presents a comprehensive life cycle assessment (LCA) of biomass-derived hydrogen production methods, including thermochemical, biochemical, and hybrid conversion routes. The analysis considers feedstock cultivation, processing, conversion, and hydrogen purification, assessing key environmental indicators such as global warming potential (GWP), acidification potential, eutrophication, and energy return on investment (EROI). Results show that while biomass gasification offers high hydrogen yields, it presents moderate GWP due to process emissions. In contrast, biological fermentation routes yield lower environmental burdens but at the cost of reduced hydrogen output. Co-product credits and carbon sequestration via biochar can significantly offset emissions. Sensitivity analysis highlights the influence of feedstock type, process efficiency, and regional electricity mix. The findings underscore the need for integrated process design and regionalized sustainability assessments to guide the deployment of truly green hydrogen technologies.

References

Deparyment of Energy (DOE). 2022. H2A production analysis: DOE hydrogen Program. Energy.gov. https://www.hydrogen.energy.gov/h2a_production.html (Accessed June 21, 2023).

HYDROGEN AND FUEL CELL TECHNOLOGIES OFFICE, Energy.gov. 2020. Hydrogen production: Natural gas reforming. Department of Energy. https://www.energy.gov/eere/fuelcells/hydrogen-production-natural-gas-reforming (Accessed on: April 24, 2023).

Abdalla, A. M., S. Hossain, O. B. Nisfindy, A. T. Azad, M. Dawood, and A. K. Azad. 2018. Hydrogen production, storage, transportation and key challenges with applications: A review. Energy Conversion and Management 165 (January):602–27. doi:10.1016/j.enconman.2018.03.088.

Acar, C., and I. Dincer. 2019. Review and evaluation of hydrogen production options for better environment. Journal of Cleaner Production 218:835–49. doi:10.1016/j.jclepro.2019.02.046.

Ahmed, I., and A. K. Gupta. 2009. Evolution of syngas from cardboard gasification. Applied Energy 86 (9):1732–40. September. doi:10.1016/j.apenergy.2008.11.018.

Ajanovic, A., M. Sayer, and R. Haas. 2022. The economics and the environmental benignity of different colors of hydrogen. International Journal of Hydrogen Energy 47 (57):24136–54. July. doi:10.1016/j.ijhydene.2022.02.094.

Alfano, M., and C. Cavazza. 2018. The biologically mediated water–gas shift reaction: Structure, function and biosynthesis of monofunctional [NiFe]-carbon monoxide dehydrogenases. Sustainable Energy and Fuels 2 (8):1653–70. doi:10.1039/C8SE00085A.

Bakather, O. Y., A. Kayvani Fard, M. Ihsanullah, M. Khraisheh, S. Nasser, and M. A. Atieh. 2017. Enhanced adsorption of selenium ions from aqueous solution using iron oxide impregnated carbon nanotubes. Bioinorganic Chemistry and Applications 2017:1–12. doi:10.1155/2017/4323619.

Bakhtyari, A., M. A. Makarem, and M. R. Rahimpour. 2018. Hydrogen production through pyrolysis. In Encyclopedia of sustainability science and technology, 1–28. New York, NY: Springer New York. doi:10.1007/978-1-4939-2493-6_956-1.

Balat, M. 2008. Hydrogen-rich gas production from biomass via pyrolysis and gasification processes and Effects of catalyst on hydrogen yield, energy sources, Part a recover. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 30 (6):552–64. January. doi:10.1080/15567030600817191.

Bandgar, P. S., S. Jain, and N. L. Panwar. 2022. A comprehensive review on optimization of anaerobic digestion technologies for lignocellulosic biomass available in India. Biomass and Bioenergy 161:106479. June. doi:10.1016/j.biombioe.2022.106479.

Banu, J. R., R. Y. Kannah, S. Kavitha, M. Gunasekaran, I. T. Yeom, and G. Kumar. 2018. Disperser-induced bacterial disintegration of partially digested anaerobic sludge for efficient biomethane recovery. Chemical Engineering Journal 347:165–72. Sepetmber. doi:10.1016/j.cej.2018.04.096.

Bareiß, K., C. de la Rua, M. Möckl, and T. Hamacher. 2019. Life cycle assessment of hydrogen from proton exchange membrane water electrolysis in future energy systems. Applied Energy 237:862–72. March. doi:10.1016/j.apenergy.2019.01.001.

Bassani, A., D. Previtali, C. Pirola, G. Bozzano, S. Colombo, and F. Manenti. 2020. Mitigating carbon dioxide impact of industrial steam methane reformers by acid gas to syngas Technology: Technical and environmental feasibility. Journal of Sustainable Development of Energy, Water and Environment Systems 8 (1):71–87. doi:10.13044/j.sdewes.d7.0258.

Bauer, C., K. Treyer, C. Antonini, J. Bergerson, M. Gazzani, E. Gencer, J. Gibbins, M. Mazzotti, S. T. McCoy, R. McKenna, et al. 2022. On the climate impacts of blue hydrogen production. Sustainable Energy and Fuels 6(1):66–75. doi:10.1039/D1SE01508G.

Beaver, M. G., H. S. Caram, and S. Sircar. 2010. Sorption enhanced reaction process for direct production of fuel-cell grade hydrogen by low temperature catalytic steam–methane reforming. Journal of Power Sources 195 (7):1998–2002. April. doi:10.1016/j.jpowsour.2009.10.015.

Beims, R. F., C. L. Simonato, and V. R. Wiggers. 2019. Technology readiness level assessment of pyrolysis of trygliceride biomass to fuels and chemicals. Renewable and Sustainable Energy Reviews 112:521–29. September. doi:10.1016/j.rser.2019.06.017.

Borole, A. P. 2017. Project peer review renewable hydrogen production from biomass pyrolysis aqueous phase. 2017.

Borole, A. P., and A. L. Greig. 2019. Life-cycle assessment and systems analysis of hydrogen production. In Biohydrogen, 485–512. Elsevier.

Camacho, C. I., S. Estévez, J. J. Conde, G. Feijoo, and M. T. Moreira. 2022. Dark fermentation as an environmentally sustainable WIN-WIN solution for bioenergy production. Journal of Cleaner Production 374:134026. November. doi:10.1016/j.jclepro.2022.134026.

Carpentieri, M., A. Corti, and L. Lombardi. 2005. Life cycle assessment (LCA) of an integrated biomass gasification combined cycle (IBGCC) with CO2 removal. Energy Conversion and Management 46(11–12):1790–808. July. doi: 10.1016/j.enconman.2004.08.010.

Chen, W.-H., W. Farooq, M. Shahbaz, S. R. Naqvi, I. Ali, T. Al-Ansari, and N. A. Saidina Amin. 2021. Current status of biohydrogen production from lignocellulosic biomass, technical challenges and commercial potential through pyrolysis process. Energy 226:120433. July. doi:10.1016/j.energy.2021.120433.

Downloads

Published

2024-12-22

How to Cite

ENVIRONMENTAL IMPACT ASSESSMENT OF BIOMASS-DERIVED HYDROGEN PRODUCTION PATHWAYS: A LIFE CYCLE PERSPECTIVE. (2024). International Journal of Renewable, Green, and Sustainable Energy, 1(01), 13-18. https://doi.org/10.55640/

How to Cite

ENVIRONMENTAL IMPACT ASSESSMENT OF BIOMASS-DERIVED HYDROGEN PRODUCTION PATHWAYS: A LIFE CYCLE PERSPECTIVE. (2024). International Journal of Renewable, Green, and Sustainable Energy, 1(01), 13-18. https://doi.org/10.55640/

Similar Articles

You may also start an advanced similarity search for this article.