4
Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, Tokyo, Japan
4
Renewable Energy Research Division, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
Abstract
This study investigates the impact of various catalysts on bio-oil production from castor cake using the hydrothermal liquefaction (HTL) process. Castor cake, a non-edible agricultural residue, serves as a promising biomass feedstock for sustainable fuel generation. The experiments were conducted under subcritical water conditions, with different heterogeneous and homogeneous catalysts to evaluate their effects on bio-oil yield and composition. The presence of catalysts significantly influenced the deoxygenation and cracking reactions, leading to variations in the physicochemical properties of the resulting bio-oil. Catalysts such as Na₂CO₃ and ZnCl₂ demonstrated enhanced bio-oil yields and favorable hydrocarbon profiles. Gas chromatography–mass spectrometry (GC-MS) and elemental analysis revealed improved energy content and reduced oxygen content in catalyst-assisted runs. These findings highlight the critical role of catalytic selection in optimizing bio-oil quality and yield, supporting the advancement of sustainable biofuel production technologies.
Keywords
Castor cake, bio-oil, hydrothermal liquefaction
References
📄Idobouni, I.A., Fadhil, A.B., Saied, I.K., 2015. Conversion of de-oiled castor seed cake into bio-oil and carbon adsorbents. Energy Sources, Part A Recover. Util. Environ. Eff. 37, 2617–2624.
📄Aysu, T., 2014. Catalytic effects of ferric chloride and sodium hydroxide on supercritical liquefaction of thistle (Cirsium yildizianum). J. Supercrit. Fluids 95, 298–317. doi:10.1016/j.supflu.2014.09.024.
📄Bateni, H., Karimi, K., 2016. Biodiesel production from castor plant integrating ethanol production via a biorefinery approach. Chem. Eng. Res. Des. 107, 4–12. doi:10.1016/j.cherd.2015.08.014.
📄Berman, P., Nizri, S., Wiesman, Z., 2011. Castor oil biodiesel and its blends as alternative fuel. Biomass and Bioenergy 35, 2861–2866. doi:10.1016/j.biombioe.2011.03.024.
📄Bhaskar, T., Sera, A., Muto, A., Sakata, Y., 2008. Hydrothermal upgrading of wood biomass: influence of the addition of K2CO3 and cellulose/lignin ratio. Fuel 87, 2236–2242.
📄BP Statistical Review of World Energy. Online Available at: https://www.bp.com › dam› global › corporate › pdfs › energy-economics. Accessed on 23rd August 2019.
📄Canoira, L., García Galeán, J., Alcántara, R., Lapuerta, M., García-Contreras, R., 2010. Fatty acid methyl esters (FAMEs) from castor oil: Production process assessment and synergistic effects in its properties. Renew. Energy 35, 208–217. doi:10.1016/j.renene.2009.05.006.
📄Dhyani, V., Awasthi, A., Kumar, J., Bhaskar, T., 2017. Pyrolysis of Sorghum straw: Effect of temperature and reaction environment on the product behavior. J. Energy Environ. Sustain. 4, 64–69.
📄Guo, S., Wu, L., Wang, C., Li, J., Yang, Z., 2008. Direct conversion of sunflower shells to alkanes and aromatic compounds. Energy & Fuels 22, 3517–3522.
📄Karagöz, S., Bhaskar, T., Muto, A., Sakata, Y., Oshiki, T., Kishimoto, T., 2005. Low-temperature catalytic hydrothermal treatment of wood biomass: Analysis of liquid products. Chem. Eng. J. 108, 127–137. doi:10.1016/j.cej.2005.01.007.
📄Kaur, R., Gera, P., Jha, M.K., 2015. Study on Effects of Different Operating Parameters on the Pyrolysis of Biomass: A Review. J. Biofuels Bioenergy 1, 135–147.
📄Kaur, R., Gera, P., Jha, M.K., Bhaskar, T., 2019a. Thermochemical Route for Biohydrogen Production, Biohydrogen. doi:10.1016/b978-0-444-64203-5.00008-3.
📄Kaur, R., Gera, P., Jha, M.K., Bhaskar, T., 2019b. Reaction parameters effect on hydrothermal liquefaction of castor (Ricinus Communis)residue for energy and valuable hydrocarbons recovery. Renew. Energy 141, 1026–1041. doi:10.1016/j.renene.2019.04.064.
📄Kaur, R., Gera, P., Jha, M.K., Bhaskar, T., 2018. Pyrolysis kinetics and thermodynamic parameters of castor (Ricinus communis) residue using thermogravimetric analysis. Bioresour. Technol. 250, 422–428. doi:10.1016/j.biortech.2017.11.077.
📄Liu, Z., Zhang, F.S., 2008. Effects of various solvents on the liquefaction of biomass to produce fuels and chemical feedstocks. Energy Convers. Manag. 49, 3498–3504. doi:10.1016/j.enconman.2008.08.009.
📄Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., Ladisch, M., 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96, 673–686. doi:10.1016/j.biortech.2004.06.025.
📄Panwar, N.L., Shrirame, H.Y., Bamniya, B.R., 2010. CO2 mitigation potential from biodiesel of castor seed oil in Indian context. Clean Technol. Environ. Policy 12, 579–582.
📄Peterson, A.A., Vogel, F., Lachance, R.P., Fröling, M., Antal, Jr., M.J., Tester, J.W., 2008. Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies. Energy Environ. Sci. 1, 32. doi:10.1039/b810100k.
📄Pradhan, S., Madankar, C.S., Mohanty, P., Naik, S.N., 2012. Optimization of reactive extraction of castor seed to produce biodiesel using response surface methodology. Fuel 97, 848–855. doi:10.1016/j.fuel.2012.02.052.
📄Sakaki, T., Shibata, M., Miki, T., Hirosue, H., Hayashi, N., 1996. Reaction model of cellulose decomposition in near-critical water and fermentation of products. Bioresour. Technol. 58, 197–202.
📄Santos, N.A. V, Magriotis, Z.M., Saczk, A.A., Fassio, G.T.A., Vieira, S.S., 2015. Kinetic study of pyrolysis of castor beans (Ricinus communis L.) presscake: an alternative use for solid waste arising from the biodiesel production. Energy & Fuels 29, 2351–2357.
📄Singh, R., Balagurumurthy, B., Prakash, A., Bhaskar, T., 2015a. Catalytic hydrothermal liquefaction of water hyacinth. Bioresour. Technol. 178, 157–165. doi:10.1016/j.biortech.2014.08.119.
📄Singh, R., Bhaskar, T., Dora, S., Balagurumurthy, B., 2013. Catalytic hydrothermal upgradation of wheat husk. Bioresour. Technol. 149, 446–451. doi:10.1016/j.biortech.2013.09.092.
📄Singh, R., Chaudhary, K., Biswas, B., Balagurumurthy, B., Bhaskar, T., 2015b. Hydrothermal liquefaction of rice straw: Effect of reaction environment. J. Supercrit. Fluids 104, 70–75. doi:10.1016/j.supflu.2015.05.027.
📄Sun, X., Li, Y., 2004. Colloidal Carbon Spheres and Their Core/Shell Structures with Noble-Metal Nanoparticles. Angew. Chemie - Int. Ed. 43, 597–601. doi:10.1002/anie.200352386.
📄Thiagarajan, J., 2016. Thermogravimetric and Decomposition analysis of Jatropha , Castor and Pongamia Deoiled seed cakes.Int. J. Innov. Eng. Technol.7, 417–425.
📄Xiu, S., Shahbazi, A., 2012. Bio-oil production and upgrading research: A review. Renew. Sustain. Energy Rev. 16, 4406–4414. doi:10.1016/j.rser.2012.04.028.