International Journal of Renewable, Green, and Sustainable Energy

  1. Home
  2. Archives
  3. Vol. 2 No. 04 (2025): Volume 02 Issue 04
  4. Articles
International Journal of Renewable, Green, and Sustainable Energy

Article Details Page

INFLUENCE OF CATALYSTS ON BIO-OIL PRODUCTION FROM CASTOR CAKE VIA HYDROTHERMAL LIQUEFACTION: YIELD AND COMPOSITIONAL ANALYSIS

Authors

  • Keiko Yamashita Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, Tokyo, Japan
  • Kenji Suzuki Renewable Energy Research Division, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan

DOI:

https://doi.org/10.55640/ijrgse-v02i04-01

Keywords:

Castor cake, bio-oil, hydrothermal liquefaction

Abstract

This study investigates the impact of various catalysts on bio-oil production from castor cake using the hydrothermal liquefaction (HTL) process. Castor cake, a non-edible agricultural residue, serves as a promising biomass feedstock for sustainable fuel generation. The experiments were conducted under subcritical water conditions, with different heterogeneous and homogeneous catalysts to evaluate their effects on bio-oil yield and composition. The presence of catalysts significantly influenced the deoxygenation and cracking reactions, leading to variations in the physicochemical properties of the resulting bio-oil. Catalysts such as Na₂CO₃ and ZnCl₂ demonstrated enhanced bio-oil yields and favorable hydrocarbon profiles. Gas chromatography–mass spectrometry (GC-MS) and elemental analysis revealed improved energy content and reduced oxygen content in catalyst-assisted runs. These findings highlight the critical role of catalytic selection in optimizing bio-oil quality and yield, supporting the advancement of sustainable biofuel production technologies.

References

Idobouni, I.A., Fadhil, A.B., Saied, I.K., 2015. Conversion of de-oiled castor seed cake into bio-oil and carbon adsorbents. Energy Sources, Part A Recover. Util. Environ. Eff. 37, 2617–2624.

Aysu, T., 2014. Catalytic effects of ferric chloride and sodium hydroxide on supercritical liquefaction of thistle (Cirsium yildizianum). J. Supercrit. Fluids 95, 298–317. doi:10.1016/j.supflu.2014.09.024.

Bateni, H., Karimi, K., 2016. Biodiesel production from castor plant integrating ethanol production via a biorefinery approach. Chem. Eng. Res. Des. 107, 4–12. doi:10.1016/j.cherd.2015.08.014.

Berman, P., Nizri, S., Wiesman, Z., 2011. Castor oil biodiesel and its blends as alternative fuel. Biomass and Bioenergy 35, 2861–2866. doi:10.1016/j.biombioe.2011.03.024.

Bhaskar, T., Sera, A., Muto, A., Sakata, Y., 2008. Hydrothermal upgrading of wood biomass: influence of the addition of K2CO3 and cellulose/lignin ratio. Fuel 87, 2236–2242.

BP Statistical Review of World Energy. Online Available at: https://www.bp.com › dam› global › corporate › pdfs › energy-economics. Accessed on 23rd August 2019.

Canoira, L., García Galeán, J., Alcántara, R., Lapuerta, M., García-Contreras, R., 2010. Fatty acid methyl esters (FAMEs) from castor oil: Production process assessment and synergistic effects in its properties. Renew. Energy 35, 208–217. doi:10.1016/j.renene.2009.05.006.

Comprehensive Castor Oil Report [WWW document] d.g. URL http://www.castoroil.in/reference/report/report.html .Accessed on 25 July 2017.

Dhyani, V., Awasthi, A., Kumar, J., Bhaskar, T., 2017. Pyrolysis of Sorghum straw: Effect of temperature and reaction environment on the product behavior. J. Energy Environ. Sustain. 4, 64–69.

Guo, S., Wu, L., Wang, C., Li, J., Yang, Z., 2008. Direct conversion of sunflower shells to alkanes and aromatic compounds. Energy & Fuels 22, 3517–3522.

Karagöz, S., Bhaskar, T., Muto, A., Sakata, Y., Oshiki, T., Kishimoto, T., 2005. Low-temperature catalytic hydrothermal treatment of wood biomass: Analysis of liquid products. Chem. Eng. J. 108, 127–137. doi:10.1016/j.cej.2005.01.007.

Kaur, R., Gera, P., Jha, M.K., 2015. Study on Effects of Different Operating Parameters on the Pyrolysis of Biomass: A Review. J. Biofuels Bioenergy 1, 135–147.

Kaur, R., Gera, P., Jha, M.K., Bhaskar, T., 2019a. Thermochemical Route for Biohydrogen Production, Biohydrogen. doi:10.1016/b978-0-444-64203-5.00008-3.

Kaur, R., Gera, P., Jha, M.K., Bhaskar, T., 2019b. Reaction parameters effect on hydrothermal liquefaction of castor (Ricinus Communis)residue for energy and valuable hydrocarbons recovery. Renew. Energy 141, 1026–1041. doi:10.1016/j.renene.2019.04.064.

Kaur, R., Gera, P., Jha, M.K., Bhaskar, T., 2018. Pyrolysis kinetics and thermodynamic parameters of castor (Ricinus communis) residue using thermogravimetric analysis. Bioresour. Technol. 250, 422–428. doi:10.1016/j.biortech.2017.11.077.

Liu, Z., Zhang, F.S., 2008. Effects of various solvents on the liquefaction of biomass to produce fuels and chemical feedstocks. Energy Convers. Manag. 49, 3498–3504. doi:10.1016/j.enconman.2008.08.009.

Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., Ladisch, M., 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96, 673–686. doi:10.1016/j.biortech.2004.06.025.

Panwar, N.L., Shrirame, H.Y., Bamniya, B.R., 2010. CO2 mitigation potential from biodiesel of castor seed oil in Indian context. Clean Technol. Environ. Policy 12, 579–582.

Peterson, A.A., Vogel, F., Lachance, R.P., Fröling, M., Antal, Jr., M.J., Tester, J.W., 2008. Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies. Energy Environ. Sci. 1, 32. doi:10.1039/b810100k.

Pradhan, S., Madankar, C.S., Mohanty, P., Naik, S.N., 2012. Optimization of reactive extraction of castor seed to produce biodiesel using response surface methodology. Fuel 97, 848–855. doi:10.1016/j.fuel.2012.02.052.

Sakaki, T., Shibata, M., Miki, T., Hirosue, H., Hayashi, N., 1996. Reaction model of cellulose decomposition in near-critical water and fermentation of products. Bioresour. Technol. 58, 197–202.

Santos, N.A. V, Magriotis, Z.M., Saczk, A.A., Fassio, G.T.A., Vieira, S.S., 2015. Kinetic study of pyrolysis of castor beans (Ricinus communis L.) presscake: an alternative use for solid waste arising from the biodiesel production. Energy & Fuels 29, 2351–2357.

Singh, R., Balagurumurthy, B., Prakash, A., Bhaskar, T., 2015a. Catalytic hydrothermal liquefaction of water hyacinth. Bioresour. Technol. 178, 157–165. doi:10.1016/j.biortech.2014.08.119.

Singh, R., Bhaskar, T., Dora, S., Balagurumurthy, B., 2013. Catalytic hydrothermal upgradation of wheat husk. Bioresour. Technol. 149, 446–451. doi:10.1016/j.biortech.2013.09.092.

Singh, R., Chaudhary, K., Biswas, B., Balagurumurthy, B., Bhaskar, T., 2015b. Hydrothermal liquefaction of rice straw: Effect of reaction environment. J. Supercrit. Fluids 104, 70–75. doi:10.1016/j.supflu.2015.05.027.

Sun, X., Li, Y., 2004. Colloidal Carbon Spheres and Their Core/Shell Structures with Noble-Metal Nanoparticles. Angew. Chemie - Int. Ed. 43, 597–601. doi:10.1002/anie.200352386.

Thiagarajan, J., 2016. Thermogravimetric and Decomposition analysis of Jatropha , Castor and Pongamia Deoiled seed cakes.Int. J. Innov. Eng. Technol.7, 417–425.

Xiu, S., Shahbazi, A., 2012. Bio-oil production and upgrading research: A review. Renew. Sustain. Energy Rev. 16, 4406–4414. doi:10.1016/j.rser.2012.04.028.

Downloads

Published

2025-04-15

How to Cite

INFLUENCE OF CATALYSTS ON BIO-OIL PRODUCTION FROM CASTOR CAKE VIA HYDROTHERMAL LIQUEFACTION: YIELD AND COMPOSITIONAL ANALYSIS. (2025). International Journal of Renewable, Green, and Sustainable Energy, 2(04), 1-6. https://doi.org/10.55640/ijrgse-v02i04-01

How to Cite

INFLUENCE OF CATALYSTS ON BIO-OIL PRODUCTION FROM CASTOR CAKE VIA HYDROTHERMAL LIQUEFACTION: YIELD AND COMPOSITIONAL ANALYSIS. (2025). International Journal of Renewable, Green, and Sustainable Energy, 2(04), 1-6. https://doi.org/10.55640/ijrgse-v02i04-01