EXHAUST FLOW DYNAMICS AND PERFORMANCE ANALYSIS OF NATURAL GAS DISTRIBUTED ENERGY SYSTEMS: EXPERIMENTAL AND NUMERICAL INSIGHTS
DOI:
https://doi.org/10.55640/ijrgse-v02i03-01Keywords:
Exhaust flow dynamics, natural gas, distributed energy systemsAbstract
Natural gas distributed energy stations (NG-DES) are increasingly recognized as a vital component in modern energy planning due to their high efficiency, flexibility, and reduced carbon footprint compared to traditional centralized power generation [1, 2, 3, 4, 5, 7]. However, optimizing their operational efficiency and minimizing environmental impact necessitates a thorough understanding of their aerodynamic field, particularly at the exhaust end, which often includes heat rejection systems like cooling towers and exhaust stacks. This article presents a comprehensive research study combining experimental measurements and numerical simulations to investigate the aerodynamic field and its influence on the performance of the integrated exhaust end of an NG-DES. The study focuses on parameters such as crosswind conditions, exhaust stack height, and internal structural configurations, evaluating their effects on plume dispersion, air recirculation, and overall thermal efficiency. Experimental results, obtained through meticulous measurement techniques with uncertainty analysis, are used to validate detailed Computational Fluid Dynamics (CFD) models. The findings provide critical insights into the complex flow interactions, offering practical recommendations for optimizing the design and layout of NG-DES exhaust systems to enhance performance and mitigate environmental concerns, thereby supporting the sustainable development of green technology in the energy sector.
References
Ge Y, Han J, Zhu X, Li J, Zhu W, Yang J, et al. Power/thermal-to-hydrogen energy storage applied to natural-gas distributed energy system in different climate regions of China. Energy Convers Manag. 2023;283:116924. doi:10.1016/j.enconman.2023.116924.
Wang J, Yang Y, Sui J, Jin H. Multi-objective energy planning for regional natural gas distributed energy: a case study. J Nat Gas Sci Eng. 2016;28:418–33. doi:10.1016/j.jngse.2015.12.008.
Ge Y, Han J, Ma Q, Feng J. Optimal configuration and operation analysis of solar-assisted natural gas distributed energy system with energy storage. Energy. 2022;246:123429. doi:10.1016/j.energy.2022.123429.
Li M, Zhou M, Feng Y, Mu H, Ma Q, Ma B. Integrated design and optimization of natural gas distributed energy system for regional building complex. Energy Build. 2017;154(8):81–95. doi:10.1016/j.enbuild.2017.08.053.
Khattak SI, Khan A, Hussain K. Green technology innovations, natural gas and resource extraction strategies in BRICS: modeling impacts on CO2 emission intensity. Sustain Futures. 2024;7:100227. doi:10.1016/j.sftr.2024.100227.
Wei N, Pei J, Li H, Zhou S, Zhao J, Kvamme B, et al. Classification of natural gas hydrate resources: review, application and prospect. J Nat Gas Sci Eng. 2024;124:205269. doi:10.1016/j.jgsce.2024.205269.
Zou C, Lin M, Ma F, Liu H, Yang Z, Zhang G, et al. Development, challenges and strategies of natural gas industry under carbon neutral target in China. Pet Explor Dev. 2024;51(4):476–97. doi:10.1016/S1876-3804(24)60038-8.
Suranjan Salins S, Kumar S, González AT, Shetty S. Influence of packing configuration and flow rate on the performance of a forced draft wet cooling tower. J Build Eng. 2023;72(9):106615. doi:10.1016/j.jobe.2023.106615.
Zhao Z, Gao J, Zhu X, Qiu Q. Experimental study of the corrugated structure of film packing on thermal and resistance characteristics of cross-flow cooling tower. Int Commun Heat Mass Transf. 2023;141:106610. doi:10.1016/j.icheatmasstransfer.2022.106610.
Zhang D, Chen R, Zhang Z, He S, Gao M. Crosswind influence on heat and mass transfer performance for wet cooling tower equipped with an axial fan. Case Stud Therm Eng. 2021;27(1):101259. doi:10.1016/j.csite.2021.101259.
Wang Y, Liu Y, Yuan X, Niu P, He S, Gao M, et al. Crosswind effects on thermal performance improvement of mechanical draft cooling towers with deflector plates. Appl Therm Eng. 2024;253:123839. doi:10.1016/j.applthermaleng.2024.123839.
Shirazi M, Jahangiri A. 3D numerical study using three novel windbreak walls in natural draft dry cooling towers for performance enhancement under various crosswind conditions. Therm Sci Eng Prog. 2021;25(9):100971. doi:10.1016/j.tsep.2021.100971.
Deng W, Sun F, Wang R, He K. Influence mechanism of the louver on the thermal performance of the mechanical draft wet cooling tower. Appl Therm Eng. 2023;230:120640. doi:10.1016/j.applthermaleng.2023.120640.
Deng W, Sun F, Chen K, Zhang X. New method to decrease the air recirculation of mechanical draft wet cooling tower group by increasing height of fan duct. Appl Therm Eng. 2023;219(3):119645. doi:10.1016/j.applthermaleng.2022.119645.
Deng W, Sun F, Chen K, Zhang X. New retrofit method to cooling capacity improvement of mechanical draft wet cooling tower group. Int J Heat Mass Transf. 2022;188:122589. doi:10.1016/j.ijheatmasstransfer.2022.122589.
Deng W, Sun F, Chen K, Zhang X. The research on plume abatement and water saving of mechanical draft wet cooling tower based on the rectangle module. Int Commun Heat Mass Transf. 2022;136:106184. doi:10.1016/j.icheatmasstransfer.2022.106184.
Jiang L, Zhang Z, Sang P, Dong L, He S, Gao M, et al. Influence of noise barrier and louver on ventilation and thermal performance of wet cooling towers under crosswind conditions. Int J Therm Sci. 2022;173(2):107364. doi:10.1016/j.ijthermalsci.2021.107364.
Lee JH, Moshfeghi M, Choi YK, Hur N. A numerical simulation on recirculation phenomena of the plume generated by obstacles around a row of cooling towers. Appl Therm Eng. 2014;72(4):10–9. doi:10.1016/j.applthermaleng.2014.04.021.
Ma H, Cai L, Si F. Numerical study identifies the interaction between two adjacent dry cooling towers on fluid flow and heat transfer performances of the radiators at different points of each tower. Int J Therm Sci. 2023;191:108351. doi:10.1016/j.ijthermalsci.2023.108351.
Cuce E, Sen H, Cuce PM. Numerical performance modelling of solar chimney power plants: influence of chimney height for a pilot plant in Manzanares, Spain. Sustain Energy Technol Assess. 2020;39(1):100711. doi:10.1016/j.seta.2020.100704.
Teng K, Peng H, Lv C, Sun H, Wu H. Optimization of emission chimney heights for uranium enrichment facility based on individual dose. J Environ Radioact. 2022;255(2):107014. doi:10.1016/j.jenvrad.2022.107014.
Moffat RJ. Describing the uncertainties in experimental results. Exp Therm Fluid Sci. 1988;1(3):3–17. doi:10.1016/0894-1777(88)90043-X.
Moffat RJ. Contributions to the theory of single-sample uncertainty analysis. J Fluids Eng. 1982;104(5):250–8. doi:10.1115/1.3241818.
Klimanek A. Numerical modelling of natural draft wet-cooling towers. Arch Comput Meth Eng. 2013;20(1):61–109. doi:10.1007/s11831-013-9081-9.
Zhao Y, Sun F, Long G, Huang X, Huang W, Lyv D, et al. Comparative study on the cooling characteristics of high-level water collecting natural draft wet cooling tower and the usual cooling tower. Energ Conver Manage. 2016;116(3):150–64. doi:10.1016/j.enconman.2016.02.071.
Dang C, Jia L, Yang L. Effects of acoustic barriers and crosswind on the operating performance of evaporative cooling tower groups. J Therm Sci. 2016;25(5):532–41. doi:10.1007/s11630-016-0895-2.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Dr. Yusuke Matsuda, Dr. Stefan Kruger (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain the copyright of their manuscripts, and all Open Access articles are disseminated under the terms of the Creative Commons Attribution License 4.0 (CC-BY), which licenses unrestricted use, distribution, and reproduction in any medium, provided that the original work is appropriately cited. The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.