
TECHNO-ECONOMIC FEASIBILITY AND OPTIMIZATION OF OFF-GRID HYBRID RENEWABLE ENERGY SYSTEMS FOR RURAL ELECTRIFICATION IN ETHIOPIA
Abstract
This study explores the techno-economic feasibility and optimal configuration of off-grid hybrid renewable energy systems (HRES) for rural electrification in Ethiopia. The proposed systems integrate solar photovoltaic (PV), wind turbines, and battery storage, with or without diesel backup, to ensure reliable and sustainable energy access in remote areas. Using HOMER Pro software, various system combinations were simulated based on local resource availability, load profiles, and economic parameters. The analysis reveals that optimized HRES configurations can significantly reduce the levelized cost of electricity (LCOE), greenhouse gas emissions, and reliance on fossil fuels. Solar-wind-battery systems, in particular, showed promising results in terms of cost-effectiveness and environmental sustainability. This work supports Ethiopia’s energy access goals and provides a viable framework for clean energy implementation in underserved rural regions.
Keywords
Hybrid renewable energy system (HRES), rural electrification, techno-economic analysis
References
Dahmane, K., Boulaoutaq, E. M., Bouachrine, B., Ajaamoum, M., Imodane, B., and Mouslim, S., Hybrid MPPT control: P&O and neural network for wind energy conversion system. J Robot Control (JRC). 2023;4(1):1–11. doi:10.18196/jrc.v4i1.16770.
Kabeyi, M. J. B. and Olanrewaju, O. A., Sustainable energy transition for renewable and low carbon grid electricity generation and supply. Front Energy Res. 2022;9: 743114. doi:10.3389/fenrg.2021.743114.
Regueiro-Ferreira, R. M. and Alonso-Fernández, P., Interaction between renewable energy consumption and dematerialization: insights based on the material footprint and the environmental Kuznets curve. Energy. 2023;266: 126477. doi:10.1016/j.energy.2022.126477.
Takase, M., Aboah, M., and Kipkoech, R., A review on renewable energy potentials and energy usage statistics in Ghana. Fuel Commun. 2022;11: 100065. doi:10.1016/j.jfueco.2022.100065.
Alghamdi, O. A., Alhussainy, A. A., Alghamdi, S., AboRas, K. M., Rawa, M., and Abusorrah, A. M., Optimal techno-economic-environmental study of using renewable energy resources for Yanbu city. Front Energy Res. 2023;10: 1115376. doi:10.3389/fenrg.2022.1115376.
Jasim, A. M., Jasim, B. H., and Bureš, V., A novel grid-connected microgrid energy management system with optimal sizing using hybrid grey wolf and cuckoo search optimization algorithm. Front Energy Res. 2022;10: 960141. doi:10.3389/fenrg.2022.960141.
IEA. CO2 Emissions in 2023. IEA; 2024 [cited 2023 Mar]. Available from: https://www.iea.org/reports/co2-emissions-in-2023.
United Nations. The Sustainable Development Goals Report 2018. New York: United Nations; 2018 [cited 2023 Nov]. Available from: https://unstats.un.org/sdgs/files/report/2018/thesustainabledevelopmentgoalsreport2018-en.pdf.
International Energy Agency. World energy outlook [Internet], Paris; 2017 [cited 2023 Oct]. Available from: https://www.iea.org/bookshop/750-World_Energy_Outlook_2017.
Federal Democratic Republic of Ethiopia. Ministry of Water Irrigation and Electricity; 2017 Mar [cited 2023 Oct]. The Ethiopian Power Sector: A Renewable Future. Berlin Energy Transition Dialogue. Available from: https://www.africanpowerplatform.org/resources/reports/east-africa/ethiopia/1988-the-ethiopian-power-sector-a-renewable-future.html.
Nolan, S., Strachan, S., Rakhra, P., and Frame, D., Optimized network planning of mini-grids for the rural electrification of developing countries. IEEE PES-IAS Power Africa; 2017. doi:10.1109/PowerAfrica.2017.7991274.
Nkiriki, J. and Ustun, T. S., Mini-grid policy directions for decentralized smart energy models in Sub-Saharan Africa. 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe). Piscataway, NJ: IEEE; 2017. doi:10.1109/ISGTEurope.2017.8260217. pubid:978-1-5386-1953-7/17.
Menghwani, V., Zerriffi, H., and Pai, S., The future of renewable infrastructure is uncertain without good planning. The Conversation [Internet]; 2019 Mar 26 [cited 2023 Apr]. Available from: https://theconversation.com/the-future-of-renewable-infrastructure-is-uncertainwithoutgood-planning-111017.
Martin, J., Distributed vs. centralized electricity generation: are we witnessing a change of paradigm? An introduction to distributed generation [Internet]; 2009 [cited 2023 May]. Available from: http://www.vernimmen.net/ftp/An_introduction_to_distributed_generation.pdf.
Lighting Global. Off-Grid solar market trends report; 2016 [cited 2023 May]. Available from: https://www.esmap.org/sites/default/files/esmap-files/20160301_OffGridSolarTrendsReport.pdf.
Luu, N. A., Control and management strategies for a microgrid [thesis]; 2014 [cited 2023 Sept]. Available from: https://theses.hal.science/tel-01144941/.
United Nations Foundation. Energy access practitioner network, towards achieving universal energy access by 2030 [Internet]. UN Foundation; 2012 [cited 2023 Mar]. Available from: http://energyaccess.org/wpcontent.
Weniger, J., Bergner, J., and Quaschning, V., Integration of PV power and load forecasts into the operation of residential PV battery systems. 4th Solar Integration Workshop; 2014. doi:10.13140/2.1.3048.9283.
“Mini-Grid Support Programme” [Internet]; 2008 [cited 2023 Apr]. Available from: http://www.aepc.gov.np/index.php?option=com_content&view=article&id=147&Itemid=170 [cited 2013 Apr 5].
Abraha, A. H., Kahsay, M. B., and Kimambo, C. Z. M., Hybrid solar–wind–diesel systems for rural application in North Ethiopia: case study for three rural villages using HOMER simulation. Momona Ethiop J Sci. 2013;5(2):62–80. doi:10.4314/mejs.v5i2.94227.
Bekele, G., Study into the potential and feasibility of a standalone solar–wind hybrid electric energy supply system: for application in Ethiopia [PhD Dissertation]. Stockholm, Sweden: Royal Institute of technology (KTH); 2009 [cited 2023 May].
Bekele, G. and Palm, B., Feasibility study for a standalone solar–wind-based hybrid energy system for application in Ethiopia. Appl Energy. 2010;87(2):487–495. doi:10.1016/j.apenergy.2009.06.006.
Bekelea, G. and Boneya, G., Design of a photovoltaic-wind hybrid power generation system for Ethiopian remote area. Energy Proc. 2012;14: 1760–1765. doi:10.1016/j.egypro.2011.12.1164.
Gebreyohannes, B., Modeling and simulating of a micro hydro wind hybrid power generation system for rural area of Ethiopia [master thesis]. Addis Ababa University; 2013 [cited 2023 Dec].
Rajbongshi, R., Borgohain, D., and Mahapatra, S., Optimization of PV-biomass-diesel and grid base hybrid energy systems for rural electrification by using HOMER. Energy. 2017;126: 461–474. doi:10.1016/j.energy.2017.03.056.
Kebede, M. H., Design of standalone PV system for a typical modern average home in Shewa Robit town-Ethiopia. Am J Electr Electron Eng. 2018;6(2):72–77. doi:10.12691/ajeee-6-2-4.
Nigussie, T., Bogale, W., Bekele, F., and Dribssa, E., Feasibility study for power generation using off-grid energy system from micro hydro-PV-diesel generator-battery for rural area of Ethiopia: the case of Melkey Hera village, Western Ethiopia. AIMS Energy. 2017;5(4):667–690.
Halabi, L. M., Mekhilef, S., Olatomiwa, L., and Hazelton, J., Performance analysis of hybrid PV/diesel/battery system using HOMER: a case study Sabah, Malaysia. Energy Convers Manage. 2017;144: 322–339. doi:10.1016/j.enconman.2017.04.070.
Ghaem Sigarchian, S., Paleta, R., Malmquist, A., and Pina, A., Feasibility study of using a biogas engine as backup in a decentralized hybrid (PV/wind/battery) power generation system – case study Kenya. Energy. 2015;90: 1830–1841. doi:10.1016/j.energy.2015.07.008.
Twidell, J. and Weir, T., Renewable energy resources. 2nd ed. London: Taylor & Francis; 2006.
World Bank group [Internet]; [cited 2023 Nov]. Available from: https://www.worldbank.org/en/news/feature/2018/03/08/ethiopias-transformational-approach-to-universal-electrification.
Tesfaye, B., Improved sustainable power supply for Dagahabur and Kebridahar town of Somalia region in Ethiopia [master thesis]. Reykjavik University; 2011 [cited 2023 Dec].
Article Statistics
Downloads
Copyright License
Copyright (c) 2025 Dr. Kalkidan Tesfaye, Dr. Lars Neumann (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain the copyright of their manuscripts, and all Open Access articles are disseminated under the terms of the Creative Commons Attribution License 4.0 (CC-BY), which licenses unrestricted use, distribution, and reproduction in any medium, provided that the original work is appropriately cited. The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.