Open Access

LEVERAGING MACHINE LEARNING TO IDENTIFY MATERNAL RISK FACTORS FOR CONGENITAL HEART DISEASE IN OFFSPRING

4 Department Of Computer Science And Engineering, Indian Institute Of Technology Delhi, India
4 Department Of Pediatrics, All India Institute Of Medical Sciences (Aiims), New Delhi, India

Abstract

Congenital Heart Defects (CHDs) represent a significant global health challenge, being the most common birth anomalies. Early identification of mothers at risk of having a child with a CHD is crucial for timely intervention, improved prenatal counseling, and better neonatal outcomes. This article explores the application of machine learning (ML) methodologies to predict the risk of CHDs in offspring based on maternal characteristics and health data. We review various ML algorithms, including traditional classifiers and advanced neural networks, that have been or could be employed for this predictive task. Key aspects of data collection, preprocessing, feature engineering, and model evaluation are discussed within the context of identifying relevant maternal risk factors. By analyzing existing literature and outlining potential experimental frameworks, this study highlights the immense potential of ML in augmenting clinical decision-making, facilitating early risk stratification, and ultimately contributing to improved maternal and child health outcomes concerning CHDs.

Keywords

References

📄 Ali, F. S. A., Al Hammadi, S. A. A., Redouane, A., & Tariq, M. U. (2021). Prediction of congenital heart diseases in children using machine learning. Journal of Management Information and Decision Sciences, 24, 1–34. https://www.abacademies.org/articles/prediction-of-congenital-heart-diseases-in-children-using-machine-learning.pdf
📄 Chang, J.Jr, Binuesa, F., Caneo, L. F., Turquetto, A. L. R., Arita, E. C. T. C., Barbosa, A. C., Da Silva Fernandes, A. M., Trindade, E. M., Jatene, F. B., Dossou, P., & Jatene, M. B. (2020). Improving preoperative risk-of-death prediction in surgery congenital heart defects using artificial intelligence model: A pilot study. PLoS One, 15(9), e0238199. DOI: 10.1371/journal.pone.0238199 PMID: 32886688
📄 Dangare, C., & Apte, S. (2012). A data mining approach for prediction of heart disease using neural networks. International Journal of Computer Engineering and Technology, 3(3). https://ssrn.com/abstract=2175569
📄 Domyati, A., & Memon, Q. (2022). Robust detection of cardiac disease using machine learning algorithms. In Proceedings of the 5th International Conference on Control and Computer Vision (pp. 52–55). DOI: 10.1145/3561613.3561622
📄 Desai, H., Jones, C. E., Fogel, J. L., Negrin, K. A., Slater, N. L., Morris, K., Doody, L. R., Engstler, K., Torzone, A., Smith, J., & Butler, S. C. (2023). Assessment and management of feeding difficulties for infants with complex CHD. Cardiology in the Young, 33(1), 1–10. DOI: 10.1017/S1047951122004024 PMID: 36562257
📄 Hammoud, A., Karaki, A., Tafreshi, R., Abdulla, S., & Wahid, M. (2024). Coronary heart disease prediction: A comparative study of machine learning algorithms. Journal of Advances in Information Technology, 15(1), 27–32. DOI: 10.12720/jait.15.1.27-32
📄 Liu, S., Liu, J., Tang, J., Ji, J., Chen, J., & Liu, C. (2009). Environmental risk factors for congenital heart disease in the Shandong peninsula, China: A hospital-based case–control study. Journal of Epidemiology, 19(3), 122–130. DOI: 10.2188/jea.JE20080039 PMID: 19398851
📄 Lo Muzio, F. P., Rozzi, G., Rossi, S., Luciani, G. B., Foresti, R., Cabassi, A., Fassina, L., & Miragoli, M. (2021). Artificial intelligence supports decision making during open-chest surgery of rare congenital heart defects. Journal of Clinical Medicine, 10(22), 5330. DOI: 10.3390/jcm10225330 PMID: 34830612
📄 Lopez, D., & Manogaran, G. (2018). Health data analytics using scalable logistic regression with stochastic gradient descent. International Journal of Advanced Intelligence Paradigms, 10(1/2), 118. DOI: 10.1504/IJAIP.2018.10010530
📄 Luo, Y., Li, Z., Guo, H., Cao, H., Song, C., Guo, X., & Zhang, Y. (2017). Predicting congenital heart defects: A comparison of three data mining methods. PLoS One, 12(5), e0177811. DOI: 10.1371/journal.pone.0177811 PMID: 28542318
📄 Meda, J. T., & Mushiri, T. (2020). Predicting congenital heart diseases using Machine learning. In Proceedings of the 2nd African International Conference on Industrial Engineering and Operations Management (pp. 1716–1725). https://www.ieomsociety.org/harare2020/papers/415.pdf
📄 Mello, C. A., Lewis, R., Brooks-Kayal, A., Carlsen, J., Grabenstatter, H., & White, A. M. (2014). Supervised learning for the neurosurgery intensive care unit using single-layer perceptron classifiers. In Ślȩzak, D., Tan, A.-H., Peters, J. F., & Schwabe, L. (Eds.), Lecture notes in computer science: Vol. 8609. Brain informatics and health: BIH 2014 (pp. 231–241). Springer. DOI: 10.1007/978-3-319-09891-3_22
📄 Munakata, M. (2023). Practical cutoff values of brachial–ankle pulse wave velocity to predict 10-Year CHD risk in the Japanese general population. Journal of Atherosclerosis and Thrombosis, 30(5), 437–439. DOI: 10.5551/jat.ED215 PMID: 36184559
📄 Nordin, N., Zainol, Z., Mohd Noor, M. H., & Lai Fong, C. (2021). A comparative study of machine learning techniques for suicide attempts predictive model. Health Informatics Journal, 27(1), 1460458221989395. Advance online publication. DOI: 10.1177/1460458221989395 PMID: 33745355
📄 Parveen, H., Rizvi, S. W. A., & Boddu, R. S. K. (2024). Enhanced knowledge based system for cardiovascular disease prediction using advanced fuzzy TOPSIS. International Journal of Intelligent Systems and Applications in Engineering, 12(11s), 570–583. https://www.ijisae.org/index.php/IJISAE/article/view/4478/3137
📄 Peng, J., Meng, Z., Zhou, S., Zhou, Y., Wu, Y., Wang, Q., Wang, J., & Sun, K. (2019). The non‐genetic paternal factors for congenital heart defects: A systematic review and meta‐analysis. Clinical Cardiology, 42(7), 684–691. DOI: 10.1002/clc.23194 PMID: 31073996
📄 Reddy, V. S. K., Meghana, P., Reddy, N. V. S., & Rao, B. A. (2022). Prediction on cardiovascular disease using decision tree and naïve Bayes classifiers. Journal of Physics: Conference Series, 2161(1), 012015. DOI: 10.1088/1742-6596/2161/1/012015
📄 Rani, S., & Masood, S. (2020). Predicting congenital heart disease using machine learning techniques. Journal of Discrete Mathematical Sciences and Cryptography, 23(1), 293–303. DOI: 10.1080/09720529.2020.1721862
📄 Qu, Y., Deng, X., Lin, S., Han, F., Chang, H. H., Ou, Y., Nie, Z., Mai, J., Wang, X., Gao, X., Wu, Y., Chen, J., Zhuang, J., Ryan, I., & Liu, X. (2022). Using innovative machine learning methods to screen and identify predictors of congenital heart diseases. Frontiers in Cardiovascular Medicine, 8, 797002. Advance online publication. DOI: 10.3389/fcvm.2021.797002 PMID: 35071361
📄 Song, Y., Higgins, H., Guo, J., Harrison, K., Schultz, E. N., Hales, B. J., Moses, E. K., Goldblatt, J., Pachter, N., & Zhang, G. (2018). Clinical significance of circulating microRNAs as markers in detecting and predicting congenital heart defects in children. Journal of Translational Medicine, 16(1), 42. Advance online publication. DOI: 10.1186/s12967-018-1411-0 PMID: 29482591
📄 Subhadra, K., & Vikas, B. (2019). Neural network based intelligent system for predicting heart disease. International Journal of Innovative Technology and Exploring Engineering, 8(5), 484–487. https://www.ijitee.org/wp-content/uploads/papers/v8i5/D2770028419.pdf
📄 Truong, V. T., Nguyen, B. P., Nguyen-Vo, T., Mazur, W., Chung, E. S., Palmer, C., Tretter, J. T., Alsaied, T., Pham, V. T., Do, H. Q., Do, P. T. N., Pham, V. N., Ha, B. N., Chau, H. N., & Le, T. K. (2022). Application of machine learning in screening for congenital heart diseases using fetal echocardiography. The International Journal of Cardiovascular Imaging, 38(5), 1007–1015. DOI: 10.1007/s10554-022-02566-3 PMID: 35192082
📄 Umm-E-Ammarah, N., Bukhari, F., Idrees, M., & Iqbal, W. (2021). Predictive analysis of congenital heart defects prior to birth. In 2021 International Conference on Robotics and Automation in Industry (ICRAI) (pp. 1–6). DOI: 10.1109/ICRAI54018.2021.9651436
📄 Yang, H., Chen, Z., Yang, H., & Tian, M. (2023). Predicting coronary heart disease using an improved lightGBM model: Performance analysis and comparison. IEEE Access: Practical Innovations, Open Solutions, 11, 23366–23380. DOI: 10.1109/ACCESS.2023.3253885
📄 van Hagen, I. M., & Roos-Hesselink, J. W. (2020). Pregnancy in congenital heart disease: Risk prediction and counselling. Heart (British Cardiac Society), 106(23), 1853–1861. DOI: 10.1136/heartjnl-2019-314702 PMID: 32611675
📄 Rohit Khankhoje, "Beyond Coding: A Comprehensive Study of Low-Code, No-Code and Traditional Automation," Journal of Artificial Intelligence & Cloud Computing, vol. 1, no. 4, pp. 1-5, 2022. DOI: 10.47363/JAICC/2022(1)148.

Similar Articles

1-10 of 21

You may also start an advanced similarity search for this article.