LEVERAGING MACHINE LEARNING TO IDENTIFY MATERNAL RISK FACTORS FOR CONGENITAL HEART DISEASE IN OFFSPRING
DOI:
https://doi.org/10.55640/ijidml-v02i05-01Keywords:
Machine learning, Maternal risk factors, Congenital heart disease, Predictive modelingAbstract
Congenital Heart Defects (CHDs) represent a significant global health challenge, being the most common birth anomalies. Early identification of mothers at risk of having a child with a CHD is crucial for timely intervention, improved prenatal counseling, and better neonatal outcomes. This article explores the application of machine learning (ML) methodologies to predict the risk of CHDs in offspring based on maternal characteristics and health data. We review various ML algorithms, including traditional classifiers and advanced neural networks, that have been or could be employed for this predictive task. Key aspects of data collection, preprocessing, feature engineering, and model evaluation are discussed within the context of identifying relevant maternal risk factors. By analyzing existing literature and outlining potential experimental frameworks, this study highlights the immense potential of ML in augmenting clinical decision-making, facilitating early risk stratification, and ultimately contributing to improved maternal and child health outcomes concerning CHDs.
References
Ali, F. S. A., Al Hammadi, S. A. A., Redouane, A., & Tariq, M. U. (2021). Prediction of congenital heart diseases in children using machine learning. Journal of Management Information and Decision Sciences, 24, 1–34. https://www.abacademies.org/articles/prediction-of-congenital-heart-diseases-in-children-using-machine-learning.pdf
Chang, J.Jr, Binuesa, F., Caneo, L. F., Turquetto, A. L. R., Arita, E. C. T. C., Barbosa, A. C., Da Silva Fernandes, A. M., Trindade, E. M., Jatene, F. B., Dossou, P., & Jatene, M. B. (2020). Improving preoperative risk-of-death prediction in surgery congenital heart defects using artificial intelligence model: A pilot study. PLoS One, 15(9), e0238199. DOI: 10.1371/journal.pone.0238199 PMID: 32886688
Dangare, C., & Apte, S. (2012). A data mining approach for prediction of heart disease using neural networks. International Journal of Computer Engineering and Technology, 3(3). https://ssrn.com/abstract=2175569
Domyati, A., & Memon, Q. (2022). Robust detection of cardiac disease using machine learning algorithms. In Proceedings of the 5th International Conference on Control and Computer Vision (pp. 52–55). DOI: 10.1145/3561613.3561622
Desai, H., Jones, C. E., Fogel, J. L., Negrin, K. A., Slater, N. L., Morris, K., Doody, L. R., Engstler, K., Torzone, A., Smith, J., & Butler, S. C. (2023). Assessment and management of feeding difficulties for infants with complex CHD. Cardiology in the Young, 33(1), 1–10. DOI: 10.1017/S1047951122004024 PMID: 36562257
Hammoud, A., Karaki, A., Tafreshi, R., Abdulla, S., & Wahid, M. (2024). Coronary heart disease prediction: A comparative study of machine learning algorithms. Journal of Advances in Information Technology, 15(1), 27–32. DOI: 10.12720/jait.15.1.27-32
Liu, S., Liu, J., Tang, J., Ji, J., Chen, J., & Liu, C. (2009). Environmental risk factors for congenital heart disease in the Shandong peninsula, China: A hospital-based case–control study. Journal of Epidemiology, 19(3), 122–130. DOI: 10.2188/jea.JE20080039 PMID: 19398851
Lo Muzio, F. P., Rozzi, G., Rossi, S., Luciani, G. B., Foresti, R., Cabassi, A., Fassina, L., & Miragoli, M. (2021). Artificial intelligence supports decision making during open-chest surgery of rare congenital heart defects. Journal of Clinical Medicine, 10(22), 5330. DOI: 10.3390/jcm10225330 PMID: 34830612
Lopez, D., & Manogaran, G. (2018). Health data analytics using scalable logistic regression with stochastic gradient descent. International Journal of Advanced Intelligence Paradigms, 10(1/2), 118. DOI: 10.1504/IJAIP.2018.10010530
Luo, Y., Li, Z., Guo, H., Cao, H., Song, C., Guo, X., & Zhang, Y. (2017). Predicting congenital heart defects: A comparison of three data mining methods. PLoS One, 12(5), e0177811. DOI: 10.1371/journal.pone.0177811 PMID: 28542318
Meda, J. T., & Mushiri, T. (2020). Predicting congenital heart diseases using Machine learning. In Proceedings of the 2nd African International Conference on Industrial Engineering and Operations Management (pp. 1716–1725). https://www.ieomsociety.org/harare2020/papers/415.pdf
Mello, C. A., Lewis, R., Brooks-Kayal, A., Carlsen, J., Grabenstatter, H., & White, A. M. (2014). Supervised learning for the neurosurgery intensive care unit using single-layer perceptron classifiers. In Ślȩzak, D., Tan, A.-H., Peters, J. F., & Schwabe, L. (Eds.), Lecture notes in computer science: Vol. 8609. Brain informatics and health: BIH 2014 (pp. 231–241). Springer. DOI: 10.1007/978-3-319-09891-3_22
Munakata, M. (2023). Practical cutoff values of brachial–ankle pulse wave velocity to predict 10-Year CHD risk in the Japanese general population. Journal of Atherosclerosis and Thrombosis, 30(5), 437–439. DOI: 10.5551/jat.ED215 PMID: 36184559
Nordin, N., Zainol, Z., Mohd Noor, M. H., & Lai Fong, C. (2021). A comparative study of machine learning techniques for suicide attempts predictive model. Health Informatics Journal, 27(1), 1460458221989395. Advance online publication. DOI: 10.1177/1460458221989395 PMID: 33745355
Parveen, H., Rizvi, S. W. A., & Boddu, R. S. K. (2024). Enhanced knowledge based system for cardiovascular disease prediction using advanced fuzzy TOPSIS. International Journal of Intelligent Systems and Applications in Engineering, 12(11s), 570–583. https://www.ijisae.org/index.php/IJISAE/article/view/4478/3137
Peng, J., Meng, Z., Zhou, S., Zhou, Y., Wu, Y., Wang, Q., Wang, J., & Sun, K. (2019). The non‐genetic paternal factors for congenital heart defects: A systematic review and meta‐analysis. Clinical Cardiology, 42(7), 684–691. DOI: 10.1002/clc.23194 PMID: 31073996
Reddy, V. S. K., Meghana, P., Reddy, N. V. S., & Rao, B. A. (2022). Prediction on cardiovascular disease using decision tree and naïve Bayes classifiers. Journal of Physics: Conference Series, 2161(1), 012015. DOI: 10.1088/1742-6596/2161/1/012015
Rani, S., & Masood, S. (2020). Predicting congenital heart disease using machine learning techniques. Journal of Discrete Mathematical Sciences and Cryptography, 23(1), 293–303. DOI: 10.1080/09720529.2020.1721862
Qu, Y., Deng, X., Lin, S., Han, F., Chang, H. H., Ou, Y., Nie, Z., Mai, J., Wang, X., Gao, X., Wu, Y., Chen, J., Zhuang, J., Ryan, I., & Liu, X. (2022). Using innovative machine learning methods to screen and identify predictors of congenital heart diseases. Frontiers in Cardiovascular Medicine, 8, 797002. Advance online publication. DOI: 10.3389/fcvm.2021.797002 PMID: 35071361
Song, Y., Higgins, H., Guo, J., Harrison, K., Schultz, E. N., Hales, B. J., Moses, E. K., Goldblatt, J., Pachter, N., & Zhang, G. (2018). Clinical significance of circulating microRNAs as markers in detecting and predicting congenital heart defects in children. Journal of Translational Medicine, 16(1), 42. Advance online publication. DOI: 10.1186/s12967-018-1411-0 PMID: 29482591
Subhadra, K., & Vikas, B. (2019). Neural network based intelligent system for predicting heart disease. International Journal of Innovative Technology and Exploring Engineering, 8(5), 484–487. https://www.ijitee.org/wp-content/uploads/papers/v8i5/D2770028419.pdf
Truong, V. T., Nguyen, B. P., Nguyen-Vo, T., Mazur, W., Chung, E. S., Palmer, C., Tretter, J. T., Alsaied, T., Pham, V. T., Do, H. Q., Do, P. T. N., Pham, V. N., Ha, B. N., Chau, H. N., & Le, T. K. (2022). Application of machine learning in screening for congenital heart diseases using fetal echocardiography. The International Journal of Cardiovascular Imaging, 38(5), 1007–1015. DOI: 10.1007/s10554-022-02566-3 PMID: 35192082
Umm-E-Ammarah, N., Bukhari, F., Idrees, M., & Iqbal, W. (2021). Predictive analysis of congenital heart defects prior to birth. In 2021 International Conference on Robotics and Automation in Industry (ICRAI) (pp. 1–6). DOI: 10.1109/ICRAI54018.2021.9651436
Yang, H., Chen, Z., Yang, H., & Tian, M. (2023). Predicting coronary heart disease using an improved lightGBM model: Performance analysis and comparison. IEEE Access: Practical Innovations, Open Solutions, 11, 23366–23380. DOI: 10.1109/ACCESS.2023.3253885
van Hagen, I. M., & Roos-Hesselink, J. W. (2020). Pregnancy in congenital heart disease: Risk prediction and counselling. Heart (British Cardiac Society), 106(23), 1853–1861. DOI: 10.1136/heartjnl-2019-314702 PMID: 32611675
Rohit Khankhoje, "Beyond Coding: A Comprehensive Study of Low-Code, No-Code and Traditional Automation," Journal of Artificial Intelligence & Cloud Computing, vol. 1, no. 4, pp. 1-5, 2022. DOI: 10.47363/JAICC/2022(1)148.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Kartik Tandon, Dr. Priya Menon (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain the copyright of their manuscripts, and all Open Access articles are disseminated under the terms of the Creative Commons Attribution License 4.0 (CC-BY), which licenses unrestricted use, distribution, and reproduction in any medium, provided that the original work is appropriately cited. The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.