MACHINE LEARNING MODEL IMPLEMENTATION STRATEGIES AND PREDICTIVE FACTORS FOR PREECLAMPSIA FORECASTING: A REVIEW
Abstract
Preeclampsia remains a leading cause of maternal and perinatal morbidity and mortality globally. Accurate and early prediction is crucial for timely intervention and improved outcomes. Machine learning (ML) has emerged as a promising approach for identifying individuals at high risk of developing preeclampsia by leveraging complex patterns within diverse datasets. However, translating promising ML research models into effective, reliable, and scalable clinical deployment presents significant challenges. This article reviews the current landscape of machine learning applications in preeclampsia prediction, focusing on identified deployment patterns and key predictive features. We synthesize findings from recent literature, discussing commonly employed ML algorithms, the types of data and features utilized (including maternal characteristics, biomarkers, and clinical history), and the reported predictive performance. Crucially, we examine the challenges and considerations related to the practical implementation of these models within healthcare systems, including data quality, model interpretability, integration into clinical workflows, and the necessity of robust MLOps practices. This review highlights the critical need to address deployment-related aspects to ensure that ML models for preeclampsia prediction can move beyond research settings and achieve real-world clinical impact, ultimately contributing to improved maternal health outcomes.
Keywords
References
Similar Articles
- Ananya Patel (Ph.D. Candidate), ADVANCING FINANCIAL PREDICTION THROUGH QUANTUM MACHINE LEARNING , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 02 (2025): Volume 02 Issue 02
- Prof. Jiao L. Shen, Kwa Kai Ming, A Hybrid Sentiment-Aware Machine Learning Framework for Real-Time Dynamic Pricing in E-Commerce. , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 11 (2025): Volume 02 Issue 11
- Elias J. Vance, Clara M. Soto, High-Frequency Data Driven Network Learning for Systemic Risk Analysis in Financial Markets , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 09 (2025): Volume 02 Issue 09
- Dr. Julian E. Vance, Prof. Anya S. Petrova, Advancing Artificial Intelligence: An In-Depth Look at Machine Learning and Deep Learning Architectures, Methodologies, Applications, and Future Trends , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 09 (2025): Volume 02 Issue 09
- Dr. Tanay Deshpande, Dr. Kavita Sharma, ADVANCING ARTIFICIAL INTELLIGENCE: AN IN-DEPTH LOOK AT MACHINE LEARNING AND DEEP LEARNING ARCHITECTURES, METHODOLOGIES, APPLICATIONS, AND FUTURE TRENDS , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 01 (2025): Volume 02 Issue 01
- Dr. Ali H. Al-Najjar, Dr. Peter M. Osei, ADVANCED MACHINE LEARNING FOR CARDIAC DISEASE CLASSIFICATION: A PERFORMANCE ANALYSIS , International Journal of Intelligent Data and Machine Learning: Vol. 1 No. 01 (2024): Volume 01 Issue 01
- Kartik Tandon, Dr. Priya Menon, LEVERAGING MACHINE LEARNING TO IDENTIFY MATERNAL RISK FACTORS FOR CONGENITAL HEART DISEASE IN OFFSPRING , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 05 (2025): Volume 02 Issue 05
- Isabella Rossi, Elena Petrova, LEVERAGING QUANTUM CONVOLUTIONAL LAYERS FOR ENHANCED IMAGE CLASSIFICATION: AN EXAMINATION OF QUANVOLUTIONAL NEURAL NETWORK CHARACTERISTICS , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 06 (2025): Volume 02 Issue 06
- Dr. Samuel Moyo, OPTIMIZING ADAPTIVE NEURO-FUZZY SYSTEMS FOR ENHANCED PHISHING DETECTION , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 05 (2025): Volume 02 Issue 05
- Dr. Eleanor Vance, Dr. Kenji Sato, Architectural Frameworks and Security Challenges in Wireless Sensor Networks: A Critical Review , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 10 (2025): Volume 02 Issue 10
You may also start an advanced similarity search for this article.