ADVANCED MACHINE LEARNING FOR CARDIAC DISEASE CLASSIFICATION: A PERFORMANCE ANALYSIS
Abstract
Heart disease remains a leading cause of morbidity and mortality globally, necessitating accurate and early diagnostic tools to improve patient outcomes. The escalating volume of healthcare data, coupled with advancements in computational capabilities, has positioned machine learning (ML) as a transformative approach for enhancing the classification of cardiac conditions. This article provides a comprehensive evaluation of machine learning models, particularly focusing on Multilayer Perceptron (MLP) and Support Vector Machine (SVM) architectures, for their efficacy in classifying heart disease. We delve into the methodologies employed, including feature selection and model training, and analyze their performance metrics. The discussion highlights how these advanced computational techniques contribute to more precise, efficient, and reliable diagnostic support systems, thereby aiding clinicians in early detection and personalized treatment strategies.
Keywords
References
Similar Articles
- Ananya Patel (Ph.D. Candidate), ADVANCING FINANCIAL PREDICTION THROUGH QUANTUM MACHINE LEARNING , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 02 (2025): Volume 02 Issue 02
- Isabella Rossi, Elena Petrova, LEVERAGING QUANTUM CONVOLUTIONAL LAYERS FOR ENHANCED IMAGE CLASSIFICATION: AN EXAMINATION OF QUANVOLUTIONAL NEURAL NETWORK CHARACTERISTICS , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 06 (2025): Volume 02 Issue 06
- Kartik Tandon, Dr. Priya Menon, LEVERAGING MACHINE LEARNING TO IDENTIFY MATERNAL RISK FACTORS FOR CONGENITAL HEART DISEASE IN OFFSPRING , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 05 (2025): Volume 02 Issue 05
- Dr. Julian E. Vance, Prof. Anya S. Petrova, Advancing Artificial Intelligence: An In-Depth Look at Machine Learning and Deep Learning Architectures, Methodologies, Applications, and Future Trends , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 09 (2025): Volume 02 Issue 09
- Dr. Tanay Deshpande, Dr. Kavita Sharma, ADVANCING ARTIFICIAL INTELLIGENCE: AN IN-DEPTH LOOK AT MACHINE LEARNING AND DEEP LEARNING ARCHITECTURES, METHODOLOGIES, APPLICATIONS, AND FUTURE TRENDS , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 01 (2025): Volume 02 Issue 01
- Dr. Elena Petrova, Prof. David J. Hernandez, MACHINE LEARNING MODEL IMPLEMENTATION STRATEGIES AND PREDICTIVE FACTORS FOR PREECLAMPSIA FORECASTING: A REVIEW , International Journal of Intelligent Data and Machine Learning: Vol. 1 No. 01 (2024): Volume 01 Issue 01
- Dr. Hannah Brown, Ahmed Al-Farsi, BRIDGING DEEP LEARNING AND ADAPTIVE SYSTEMS: A PERFORMANCE STUDY ON CIFAR-10 IMAGE CLASSIFICATION , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 03 (2025): Volume 02 Issue 03
- Yuki Nakamura, Isabella Romano, HYBRID DEEP LEARNING FOR TEXT CLASSIFICATION: INTEGRATING BIDIRECTIONAL GATED RECURRENT UNITS WITH CONVOLUTIONAL NEURAL NETWORKS , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 04 (2025): Volume 02 Issue 04
- Prof. Jiao L. Shen, Kwa Kai Ming, A Hybrid Sentiment-Aware Machine Learning Framework for Real-Time Dynamic Pricing in E-Commerce. , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 11 (2025): Volume 02 Issue 11
- Dr. Samuel Moyo, OPTIMIZING ADAPTIVE NEURO-FUZZY SYSTEMS FOR ENHANCED PHISHING DETECTION , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 05 (2025): Volume 02 Issue 05
You may also start an advanced similarity search for this article.