A SEMANTIC METRIC LEARNING APPROACH FOR ENHANCED MALWARE SIMILARITY SEARCH
Abstract
Identifying and categorizing malware variants efficiently is a critical capability for modern cybersecurity systems tasked with defending against rapidly evolving threats. Traditional similarity search techniques often rely on syntactic or signature-based comparisons, which are insufficient for capturing deeper semantic relationships among malware samples, especially in the presence of obfuscation and polymorphism. This research introduces a semantic metric learning approach for enhanced malware similarity search that leverages deep neural embeddings trained to capture high-level behavioral and structural characteristics of malicious code. By employing a supervised metric learning framework with contrastive and triplet loss functions, the model learns a discriminative embedding space in which semantically similar malware instances are mapped closer together while dissimilar samples are pushed farther apart. Experimental evaluations on benchmark malware datasets demonstrate that the proposed method significantly outperforms traditional hashing and signature-based approaches in retrieval precision, recall, and mean average precision. The results underscore the potential of semantic metric learning to advance malware analysis, facilitate threat hunting, and improve incident response workflows by enabling more accurate and scalable similarity-based retrieval.
Keywords
References
Most read articles by the same author(s)
- Yuki Nakamura, Isabella Romano, HYBRID DEEP LEARNING FOR TEXT CLASSIFICATION: INTEGRATING BIDIRECTIONAL GATED RECURRENT UNITS WITH CONVOLUTIONAL NEURAL NETWORKS , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 04 (2025): Volume 02 Issue 04
Similar Articles
- Yuki Nakamura, Isabella Romano, HYBRID DEEP LEARNING FOR TEXT CLASSIFICATION: INTEGRATING BIDIRECTIONAL GATED RECURRENT UNITS WITH CONVOLUTIONAL NEURAL NETWORKS , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 04 (2025): Volume 02 Issue 04
- Dr. Julian E. Vance, Prof. Anya S. Petrova, Advancing Artificial Intelligence: An In-Depth Look at Machine Learning and Deep Learning Architectures, Methodologies, Applications, and Future Trends , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 09 (2025): Volume 02 Issue 09
- Qi Xin, DEEP LEARNING FOR E‑COMMERCE RECOMMENDATIONS: CAPTURING LONG- AND SHORT-TERM USER PREFERENCES WITH CNN-BASED REPRESENTATION LEARNING , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 08 (2025): Volume 02 Issue 08
- Dr. Tanay Deshpande, Dr. Kavita Sharma, ADVANCING ARTIFICIAL INTELLIGENCE: AN IN-DEPTH LOOK AT MACHINE LEARNING AND DEEP LEARNING ARCHITECTURES, METHODOLOGIES, APPLICATIONS, AND FUTURE TRENDS , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 01 (2025): Volume 02 Issue 01
- Dr. Hannah Brown, Ahmed Al-Farsi, BRIDGING DEEP LEARNING AND ADAPTIVE SYSTEMS: A PERFORMANCE STUDY ON CIFAR-10 IMAGE CLASSIFICATION , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 03 (2025): Volume 02 Issue 03
- Bima Satria Nugraha, Professor Anindya larasati, Dr. Huỳnh Chí Dũng, Assessing The Interoperability And Semantic Readiness Of BIM And IFC Data For AI Integration In The Architecture, Engineering, And Construction Industry: A Systematic Review , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 11 (2025): Volume 02 Issue 11
- Isabella Rossi, Elena Petrova, LEVERAGING QUANTUM CONVOLUTIONAL LAYERS FOR ENHANCED IMAGE CLASSIFICATION: AN EXAMINATION OF QUANVOLUTIONAL NEURAL NETWORK CHARACTERISTICS , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 06 (2025): Volume 02 Issue 06
- Ananya Patel (Ph.D. Candidate), ADVANCING FINANCIAL PREDICTION THROUGH QUANTUM MACHINE LEARNING , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 02 (2025): Volume 02 Issue 02
- Dr. Ali H. Al-Najjar, Dr. Peter M. Osei, ADVANCED MACHINE LEARNING FOR CARDIAC DISEASE CLASSIFICATION: A PERFORMANCE ANALYSIS , International Journal of Intelligent Data and Machine Learning: Vol. 1 No. 01 (2024): Volume 01 Issue 01
- Dr. Elena Petrova, Prof. David J. Hernandez, MACHINE LEARNING MODEL IMPLEMENTATION STRATEGIES AND PREDICTIVE FACTORS FOR PREECLAMPSIA FORECASTING: A REVIEW , International Journal of Intelligent Data and Machine Learning: Vol. 1 No. 01 (2024): Volume 01 Issue 01
You may also start an advanced similarity search for this article.