A Dynamic Nexus: Integrating Big Data Analytics and Distributed Computing for Real-Time Risk Management of Derivatives Portfolios
Abstract
The growing complexity and velocity of derivatives markets demand risk management systems capable of processing massive, high-frequency data streams and responding to rapidly evolving exposures. This paper presents a critical review and conceptual framework for integrating Big Data analytics with distributed computing architectures to enable real-time risk management of derivatives portfolios. We analyze current practices in market and credit risk computation, highlighting limitations in traditional centralized infrastructures, including latency bottlenecks, computational inefficiencies, and delayed visibility into systemic risk signals. Emerging technologies — such as in-memory distributed clusters, event-driven streaming pipelines, and scalable machine learning models — are examined for their potential to accelerate valuation adjustments, margin calculations, and stress testing under volatile market conditions. We propose an architecture that leverages heterogeneous data sources, parallelized pricing engines, and continuous predictive analytics to support dynamic hedging decisions and regulatory compliance with near-zero latency. Key challenges, including data quality governance, model interpretability, cyber-resilience, and cost-to-performance trade-offs, are discussed to guide successful implementation. The synthesis underscores that a harmonized Big Data–distributed computing ecosystem can fundamentally enhance the accuracy, agility, and robustness of derivatives risk management — enabling financial institutions to mitigate emerging risks proactively while sustaining competitive advantage in increasingly digital capital markets.
Keywords
References
Similar Articles
- Dr. Isabella Müller, Samuel Moyo, UNLOCKING SYNERGIES: A FRAMEWORK FOR INTEGRATING ARTIFICIAL INTELLIGENCE AND BLOCKCHAIN TECHNOLOGIES , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 07 (2025): Volume 02 Issue 07
- Dr. Elena Petrova, Prof. David J. Hernandez, MACHINE LEARNING MODEL IMPLEMENTATION STRATEGIES AND PREDICTIVE FACTORS FOR PREECLAMPSIA FORECASTING: A REVIEW , International Journal of Intelligent Data and Machine Learning: Vol. 1 No. 01 (2024): Volume 01 Issue 01
- Isabella Rossi, Elena Petrova, LEVERAGING QUANTUM CONVOLUTIONAL LAYERS FOR ENHANCED IMAGE CLASSIFICATION: AN EXAMINATION OF QUANVOLUTIONAL NEURAL NETWORK CHARACTERISTICS , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 06 (2025): Volume 02 Issue 06
- Dr. Larian D. Venorth, Prof. Maevis K. Durand, The Transformative Trajectory Of Large Language Models: Societal Impact, Predictive Limitations, And The Unforeseen Geohazard Nexus , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 10 (2025): Volume 02 Issue 10
- Prof. Karan M. Bhatia, Mehul A. Rajput, HARNESSING AI FOR PROACTIVE PUBLIC RELATIONS: A FRAMEWORK FOR PREDICTING AND CAPITALIZING ON SOCIAL MEDIA TRENDS , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 10 (2025): Volume 02 Issue 10
- Dr. Natalia V. Smirnova, Elena Baranova, ADAPTIVE LINEAR MODELS FOR REGRESSION IN EVOLVING DATA STREAMS , International Journal of Intelligent Data and Machine Learning: Vol. 1 No. 01 (2024): Volume 01 Issue 01
- Agus Santoso, Siti Nurhayati, ALGORITHMIC GUARANTEES FOR HIERARCHICAL DATA GROUPING: INSIGHTS FROM AVERAGE LINKAGE, BISECTING K-MEANS, AND LOCAL SEARCH HEURISTICS , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 02 (2025): Volume 02 Issue 02
- Dr. Maria Gonzalez, ENHANCED IMAGE STEGANOGRAPHY: LSB SUBSTITUTION WITH RUN-LENGTH ENCODED SECRET DATA , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 04 (2025): Volume 02 Issue 04
- Prof. Elena M. Petrova, A Python Framework for Causal Discovery in Non-Gaussian Linear Models: The PyCD-LiNGAM Library , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 08 (2025): Volume 02 Issue 08
- Dr. Julian E. Vance, Prof. Anya S. Petrova, Advancing Artificial Intelligence: An In-Depth Look at Machine Learning and Deep Learning Architectures, Methodologies, Applications, and Future Trends , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 09 (2025): Volume 02 Issue 09
You may also start an advanced similarity search for this article.