International Journal of Next-Generation Engineering and Technology

  1. Home
  2. Archives
  3. Vol. 1 No. 01 (2024): Volume 01 Issue 01
  4. Articles
International Journal of Next-Generation Engineering and Technology

Article Details Page

ADVANCED GRAPHENE SYNTHESIS FROM SOLID POLYCYCLIC AROMATIC HYDROCARBONS VIA A CONTROLLED-ENVIRONMENT CRUCIBLE TECHNIQUE

Authors

  • Dr. Natalie R. Cheng Department of Materials Science and Nanoengineering Rice University, Houston, Texas, USA
  • Prof. Kenjiro Takamura Institute of Industrial Science The University of Tokyo, Tokyo, Japan

Keywords:

Graphene synthesis,, polycyclic aromatic hydrocarbons (PAHs)

Abstract

Graphene, a two-dimensional material with exceptional electronic, mechanical, and thermal properties, holds immense promise for next-generation technologies. While various synthesis methods exist, challenges remain in achieving high-quality, large-area graphene reliably and cost-effectively. This article presents a novel approach for the synthesis of high-purity graphene from solid polycyclic aromatic hydrocarbons (PAHs) utilizing a sealed crucible technique. This method offers precise control over the precursor vapor environment, minimizing contamination and promoting uniform growth. We detail the experimental methodology, including precursor selection, crucible preparation, optimized growth parameters (temperature, pressure, duration), and comprehensive characterization techniques. Preliminary findings indicate the successful formation of few-layer, high-quality graphene films, as evidenced by Raman spectroscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM). The discussion delves into the potential growth mechanisms and compares this technique's advantages, such as simplicity, reduced gas consumption, and potential for direct growth on various substrates, against conventional methods. This controlled-environment crucible technique represents a promising avenue for scalable, high-quality graphene production, paving the way for its broader application in electronics, sensors, and energy storage devices.

References

Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S. K., Colombo, L., & Ruoff, R. S. (2009). Science, 324, 30.

Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M. S., & Kong, J. (2009). Nano Letters, 9, 30.

Zhao, L., Rim, K. T., Zhou, H., He, R., Heinz, T. F., Pinczuk, A., Flynn, G. W., & Pasupathy, A. N. (2011). Solid State Communications, 151, 509.

Lee, H. C., Jo, S. B., Lee, E., Yoo, M. S., Kim, H. H., Lee, S. K., Lee, W. H., & Cho, K. (2016). Advanced Materials, 28, 2010.

Sun, Z., Yan, Z., Yao, J., Beitler, E., Zhu, Y., & Tour, J. M. (2010). Nature, 468, 549.

Leem, J., Wang, M. C., Kang, P., & Nam, S. (2015). Nano Letters, 15, 7684.

Lee, M.-S., Lee, K., Kim, S.-Y., Lee, H., Park, J., Choi, K.-H., Kim, H.-K., Kim, D.-G., Lee, D.-Y., Nam, S., & Park, J.-U. (2013). Nano Letters, 13, 2814.

Kim, B. J., Jang, H., Lee, S.-K., Hong, B. H., Ahn, J.-H., & Cho, J. H. (2010). Nano Letters, 10, 3464.

Bhaviripudi, S., Jia, X., Dresselhaus, M. S., & Kong, J. (2010). Nano Letters, 10, 4128.

Hao, Y., Bharathi, M., Wang, L., Liu, Y., Chen, H., Nie, S., Wang, X., Chou, H., Tan, C., Fallahazad, B., Ramanarayan, H., Magnuson, C. W., Tutuc, E., Yakobson, B. I., McCarty, K. F., Zhang, Y.-W., Kim, P., Hone, J., Colombo, L., & Ruoff, R. S. (2013). Science, 342, 720.

Li, J., Chen, M., Samad, A., Dong, H., Ray, A., Zhang, J., Jiang, X., Schwingenschlögl, U., Domke, J., Chen, C., Han, Y., Fritz, T., Ruoff, R. S., Tian, B., & Zhang, X. (2022). Nature Materials, 21, 740.

Xu, X., Zhang, Z., Qiu, L., Zhuang, J., Zhang, L., Wang, H., Liao, C., Song, H., Qiao, R., Gao, P., Hu, Z., Liao, L., Liao, Z., Yu, D., Wang, E., Ding, F., Peng, H., & Liu, K. (2016). Nature Nanotechnology, 11, 930.

Wu, T., Zhang, X., Yuan, Q., Xue, J., Lu, G., Liu, Z., Wang, H., Wang, H., Ding, F., Yu, Q., Xie, X., & Jiang, M. (2016). Nature Materials, 15, 43.

Figueira-Duarte, T. M., & Mullen, K. (2011). Chemical Reviews, 111, 7260.

Zhuo, Q.-Q., Wang, Q., Zhang, Y.-P., Zhang, D., Li, Q.-L., Gao, C.-H., Sun, Y.-Q., Ding, L., Sun, Q.-J., Wang, S.-D., Zhong, J., & Sun, X.-H. (2015). ACS Nano, 9, 594.

Zhang, L., Cao, Y., Colella, N. S., Liang, Y., Brédas, J.-L., Houk, K. N., & Briseno, A. L. (2015). Accounts of Chemical Research, 48, 500.

Jiang, H., & Hu, W. (2020). Angewandte Chemie International Edition, 59, 1408.

Dong, H., Fu, X., Liu, J., Wang, Z., & Hu, W. (2013). Advanced Materials, 25, 6158.

Wang, Y., Zhao, R., & Ackermann, L. (2023). Advanced Materials, 35, 2300760.

Ma, C., Fang, P., & Mei, T.-S. (2018). ACS Catalysis, 8, 7179.

Li, Q., Zhang, Y., Xie, Z., Zhen, Y., Hu, W., & Dong, H. (2022). Journal of Materials Chemistry C, 10, 2411.

Cui, X., Xiao, C., Zhang, L., Li, Y., & Wang, Z. (2016). Chemical Communications, 52, 13209.

Aumaitre, C., & Morin, J. F. (2019). Chemical Record, 19, 1142.

Das, S., Bhauriyal, P., & Pathak, B. (2020). Journal of Physical Chemistry C, 125, 49.

Kairi, M. I., Khavarian, M., Bakar, S. A., Vigolo, B., & Mohamed, A. R. (2018). Journal of Materials Science, 53, 851.

Pattanshetti, A., Koli, A., Dhabbe, R., Yu, X. Y., Motkuri, R. K., Chavan, V. D., Kim, D. K., & Sabale, S. (2024). Macromolecular Rapid Communications, 45, 2300647.

Wu, T., Ding, G., Shen, H., Wang, H., Sun, L., Zhu, Y., Jiang, D., & Xie, X. (2013). Nanoscale, 5, 5456.

Downloads

Published

2024-12-16

How to Cite

ADVANCED GRAPHENE SYNTHESIS FROM SOLID POLYCYCLIC AROMATIC HYDROCARBONS VIA A CONTROLLED-ENVIRONMENT CRUCIBLE TECHNIQUE. (2024). International Journal of Next-Generation Engineering and Technology, 1(01), 1-6. https://aimjournals.com/index.php/ijnget/article/view/126

How to Cite

ADVANCED GRAPHENE SYNTHESIS FROM SOLID POLYCYCLIC AROMATIC HYDROCARBONS VIA A CONTROLLED-ENVIRONMENT CRUCIBLE TECHNIQUE. (2024). International Journal of Next-Generation Engineering and Technology, 1(01), 1-6. https://aimjournals.com/index.php/ijnget/article/view/126