A Hybrid Sentiment-Aware Machine Learning Framework for Real-Time Dynamic Pricing in E-Commerce.
Abstract
This study addresses the limitation of traditional dynamic pricing models in e-commerce by developing a novel, hybrid Sentiment-Aware Dynamic Pricing (SADP) framework that integrates real-time customer sentiment alongside core transactional and competitor features. A comprehensive, multimodal dataset, including multilingual customer reviews, was subjected to a robust preprocessing pipeline (including SMOTE for imbalance handling) and extensive feature engineering (e.g., competitor price difference, estimated price elasticity of demand). Multiple advanced machine learning models were trained and rigorously evaluated using a Bayesian Optimization strategy and Time Series Cross-Validation. The XGBoost model significantly outperformed all competitors, achieving superior metrics (R2: 0.97, MAE: 1.29, RMSE: 1.65). Crucially, the integration of sentiment features was associated with a quantifiable improvement in prediction accuracy compared to models using only numerical data, demonstrating the ability to capture emotional drivers of purchasing behavior. Both XGBoost and Neural Networks demonstrated low latency, confirming their suitability for real-time, scalable deployment in live e-commerce pricing engines. This research presents one of the first empirically validated dynamic pricing frameworks to successfully integrate sentiment analysis for enhanced predictive accuracy, offering a proven, scalable architecture for next-generation revenue management.
Keywords
References
Similar Articles
- Qi Xin, DEEP LEARNING FOR E‑COMMERCE RECOMMENDATIONS: CAPTURING LONG- AND SHORT-TERM USER PREFERENCES WITH CNN-BASED REPRESENTATION LEARNING , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 08 (2025): Volume 02 Issue 08
- Dr. Tanay Deshpande, Dr. Kavita Sharma, ADVANCING ARTIFICIAL INTELLIGENCE: AN IN-DEPTH LOOK AT MACHINE LEARNING AND DEEP LEARNING ARCHITECTURES, METHODOLOGIES, APPLICATIONS, AND FUTURE TRENDS , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 01 (2025): Volume 02 Issue 01
- Ananya Patel (Ph.D. Candidate), ADVANCING FINANCIAL PREDICTION THROUGH QUANTUM MACHINE LEARNING , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 02 (2025): Volume 02 Issue 02
- Dr. Elena Petrova, Prof. David J. Hernandez, MACHINE LEARNING MODEL IMPLEMENTATION STRATEGIES AND PREDICTIVE FACTORS FOR PREECLAMPSIA FORECASTING: A REVIEW , International Journal of Intelligent Data and Machine Learning: Vol. 1 No. 01 (2024): Volume 01 Issue 01
- Yuki Nakamura, Hiroshi Tanaka, A SEMANTIC METRIC LEARNING APPROACH FOR ENHANCED MALWARE SIMILARITY SEARCH , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 01 (2025): Volume 02 Issue 01
- Kartik Tandon, Dr. Priya Menon, LEVERAGING MACHINE LEARNING TO IDENTIFY MATERNAL RISK FACTORS FOR CONGENITAL HEART DISEASE IN OFFSPRING , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 05 (2025): Volume 02 Issue 05
- Dr. Hannah Brown, Ahmed Al-Farsi, BRIDGING DEEP LEARNING AND ADAPTIVE SYSTEMS: A PERFORMANCE STUDY ON CIFAR-10 IMAGE CLASSIFICATION , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 03 (2025): Volume 02 Issue 03
- Isabella Rossi, Elena Petrova, LEVERAGING QUANTUM CONVOLUTIONAL LAYERS FOR ENHANCED IMAGE CLASSIFICATION: AN EXAMINATION OF QUANVOLUTIONAL NEURAL NETWORK CHARACTERISTICS , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 06 (2025): Volume 02 Issue 06
- Prof. Kai O. Chen, DEVELOPING AND VALIDATING A COMPREHENSIVE DISCOURSE ANNOTATION GUIDELINE FOR LOW-RESOURCE LANGUAGES , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 10 (2025): Volume 02 Issue 10
- Prof. Karan M. Bhatia, Mehul A. Rajput, HARNESSING AI FOR PROACTIVE PUBLIC RELATIONS: A FRAMEWORK FOR PREDICTING AND CAPITALIZING ON SOCIAL MEDIA TRENDS , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 10 (2025): Volume 02 Issue 10
You may also start an advanced similarity search for this article.