ADAPTIVE LINEAR MODELS FOR REGRESSION IN EVOLVING DATA STREAMS
Abstract
Regression analysis in data streams presents unique challenges due to the continuous, potentially infinite nature of the data and the phenomenon of concept drift, where the underlying data distribution or the relationship between variables changes over time. Traditional static regression models are ill-equipped to handle such dynamic environments. Adaptive linear filtering techniques offer a powerful paradigm for regression in data streams, allowing models to evolve and adjust to changing patterns. This article explores the application of linear adaptive filtering methods for regression tasks in data stream settings. We discuss the fundamental principles of adaptive filtering, common algorithms like Recursive Least Squares (RLS) and its variants, and their suitability for handling concept drift. By reviewing relevant literature on data stream mining, adaptive learning, and regression techniques, we highlight the advantages of using adaptive linear models, including their computational efficiency, ability to track changing relationships, and theoretical foundations in signal processing. While acknowledging limitations such as sensitivity to parameter choices and potential issues with non-linear relationships, this article argues that linear adaptive filtering provides a robust and efficient foundation for performing regression in dynamic data stream environments, serving as a crucial component in more complex adaptive learning systems.
Keywords
Similar Articles
- Dr. Julian E. Vance, Prof. Anya S. Petrova, Advancing Artificial Intelligence: An In-Depth Look at Machine Learning and Deep Learning Architectures, Methodologies, Applications, and Future Trends , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 09 (2025): Volume 02 Issue 09
- Dr. Isabella MΓΌller, Samuel Moyo, UNLOCKING SYNERGIES: A FRAMEWORK FOR INTEGRATING ARTIFICIAL INTELLIGENCE AND BLOCKCHAIN TECHNOLOGIES , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 07 (2025): Volume 02 Issue 07
- Prof. Jiao L. Shen, Kwa Kai Ming, A Hybrid Sentiment-Aware Machine Learning Framework for Real-Time Dynamic Pricing in E-Commerce. , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 11 (2025): Volume 02 Issue 11
- Dr. Samuel Moyo, OPTIMIZING ADAPTIVE NEURO-FUZZY SYSTEMS FOR ENHANCED PHISHING DETECTION , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 05 (2025): Volume 02 Issue 05
- Kartik Tandon, Dr. Priya Menon, LEVERAGING MACHINE LEARNING TO IDENTIFY MATERNAL RISK FACTORS FOR CONGENITAL HEART DISEASE IN OFFSPRING , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 05 (2025): Volume 02 Issue 05
- Ananya Patel (Ph.D. Candidate), ADVANCING FINANCIAL PREDICTION THROUGH QUANTUM MACHINE LEARNING , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 02 (2025): Volume 02 Issue 02
- Dr. Larian D. Venorth, Prof. Maevis K. Durand, The Transformative Trajectory Of Large Language Models: Societal Impact, Predictive Limitations, And The Unforeseen Geohazard Nexus , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 10 (2025): Volume 02 Issue 10
- Dr. Elena Petrova, Prof. David J. Hernandez, MACHINE LEARNING MODEL IMPLEMENTATION STRATEGIES AND PREDICTIVE FACTORS FOR PREECLAMPSIA FORECASTING: A REVIEW , International Journal of Intelligent Data and Machine Learning: Vol. 1 No. 01 (2024): Volume 01 Issue 01
- Prof. Kai O. Chen, DEVELOPING AND VALIDATING A COMPREHENSIVE DISCOURSE ANNOTATION GUIDELINE FOR LOW-RESOURCE LANGUAGES , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 10 (2025): Volume 02 Issue 10
- Isabella Rossi, Elena Petrova, LEVERAGING QUANTUM CONVOLUTIONAL LAYERS FOR ENHANCED IMAGE CLASSIFICATION: AN EXAMINATION OF QUANVOLUTIONAL NEURAL NETWORK CHARACTERISTICS , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 06 (2025): Volume 02 Issue 06
You may also start an advanced similarity search for this article.