LEVERAGING DEEP LEARNING IN SURVIVAL ANALYSIS FOR ENHANCED TIME-TO-EVENT PREDICTION
Abstract
Survival analysis is a critical statistical approach for modeling time-to-event outcomes across disciplines such as healthcare, engineering, and social sciences. Traditional methods, including Cox proportional hazards models, often struggle with complex, high-dimensional data and non-linear relationships. Recent advancements in deep learning have led to innovative models that significantly enhance survival prediction by capturing intricate patterns and dependencies in time-to-event data. This study explores state-of-the-art deep learning frameworks—such as DeepSurv, DeepHit, and recurrent neural networks—for survival analysis, emphasizing their architecture, performance, and application across diverse datasets. The integration of deep learning enables more accurate risk estimation and personalized prognostics, revolutionizing predictive modeling in survival data contexts. We also discuss challenges related to interpretability, data censoring, and model evaluation, proposing future research directions for robust and explainable deep survival models.
Keywords
References
Similar Articles
- Dr. Mateo Alvarez, Integrative Perspectives On Identity, Authentication, And Privacy: From RFID Security Protocols To Facial Biometric Representations , International Journal of Advanced Artificial Intelligence Research: Vol. 3 No. 01 (2026): Volume 03 Issue 01
- Dr. Lucas M. Hoffmann, Dr. Aya El-Masry, ALIGNING EXPLAINABLE AI WITH USER NEEDS: A PROPOSAL FOR A PREFERENCE-AWARE EXPLANATION FUNCTION , International Journal of Advanced Artificial Intelligence Research: Vol. 1 No. 01 (2024): Volume 01 Issue 01
- Olabayoji Oluwatofunmi Oladepo., Opeyemi Eebru Alao, EXPLAINABLE MACHINE LEARNING FOR FINANCIAL ANALYSIS , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 07 (2025): Volume 02 Issue 07
- Dr. Arvind Patel, Anamika Mishra, INTELLIGENT BARGAINING AGENTS IN DIGITAL MARKETPLACES: A FUSION OF REINFORCEMENT LEARNING AND GAME-THEORETIC PRINCIPLES , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 03 (2025): Volume 02 Issue 03
- Angelo soriano, Sheila Ann Mercado, The Convergence of AI And UVM: Advanced Methodologies for the Verification of Complex Low-Power Semiconductor Architectures , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 11 (2025): Volume 02 Issue 11
- Dr. Lukas Reinhardt, Next-Generation Security Operations Centers: A Holistic Framework Integrating Artificial Intelligence, Federated Learning, and Sustainable Green Infrastructure for Proactive Threat Mitigation , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 09 (2025): Volume 02 Issue 09
- Dr. Elara V. Sorenson, Deep Contextual Understanding: A Parameter-Efficient Large Language Model Approach To Fine-Grained Affective Computing , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 10 (2025): Volume 02 Issue 10
- Dr. Elias T. Vance, Prof. Camille A. Lefevre, ENHANCING TRUST AND CLINICAL ADOPTION: A SYSTEMATIC LITERATURE REVIEW OF EXPLAINABLE ARTIFICIAL INTELLIGENCE (XAI) APPLICATIONS IN HEALTHCARE , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 10 (2025): Volume 02 Issue 10
- John M. Davenport, AI-AUGMENTED FRAMEWORKS FOR DATA QUALITY VALIDATION: INTEGRATING RULE-BASED ENGINES, SEMANTIC DEDUPLICATION, AND GOVERNANCE TOOLS FOR ROBUST LARGE-SCALE DATA PIPELINES , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 08 (2025): Volume 02 Issue 08
- Dr. Emily Roberts, Supply Chain 4.0: The Role of Artificial Intelligence in Enhancing Resilience and Operational Efficiency , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 08 (2025): Volume 02 Issue 08
You may also start an advanced similarity search for this article.