ADAPTIVE SIMILARITY-DRIVEN APPROACHES FOR CONTINUAL LEARNING: BRIDGING TASK-AWARE AND TASK-FREE PARADIGMS
Abstract
Continual learning aims to enable models to learn sequential tasks without forgetting previously acquired knowledge. This paper presents an adaptive similarity-driven framework that bridges the gap between task-aware and task-free paradigms in continual learning. By leveraging similarity metrics to dynamically adjust learning strategies based on incoming data distributions, the proposed approach allows models to maintain performance across tasks without relying on explicit task boundaries. Experimental evaluations on benchmark datasets demonstrate that the adaptive similarity-driven method outperforms traditional task-aware and task-free models in mitigating catastrophic forgetting while preserving scalability. The findings offer a promising direction for developing flexible and efficient continual learning systems adaptable to real-world scenarios.
Keywords
References
Similar Articles
- Mason Johnson, Forging Rich Multimodal Representations: A Survey of Contrastive Self-Supervised Learning , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 11 (2025): Volume 02 Issue 11
- Dwi Jatmiko, Huu Nguyen, AI-Guided Policy Learning For Hyperdimensional Sampling: Exploiting Expert Human Demonstrations From Interactive Virtual Reality Molecular Dynamics , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 10 (2025): Volume 02 Issue 10
- Dr. Kenji Yamamoto, Prof. Lijuan Wang, LEVERAGING DEEP LEARNING IN SURVIVAL ANALYSIS FOR ENHANCED TIME-TO-EVENT PREDICTION , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 05 (2025): Volume 02 Issue 05
- Dr. Larian D. Venorth, Prof. Elias J. Vance, A Machine Learning Approach to Identifying Maternal Risk Factors for Congenital Heart Disease , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 08 (2025): Volume 02 Issue 08
- Sara Rossi, Samuel Johnson, NEUROSYMBOLIC AI: MERGING DEEP LEARNING AND LOGICAL REASONING FOR ENHANCED EXPLAINABILITY , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 06 (2025): Volume 02 Issue 06
- Dr. Arvind Patel, Anamika Mishra, INTELLIGENT BARGAINING AGENTS IN DIGITAL MARKETPLACES: A FUSION OF REINFORCEMENT LEARNING AND GAME-THEORETIC PRINCIPLES , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 03 (2025): Volume 02 Issue 03
- Dr. Matteo Rossi, Dr. Aisha El-Sayed, META-LEARNING DRIVEN FEW-SHOT DIAGNOSTICS: ADDRESSING RARE DISEASE CLASSIFICATION IN MEDICAL AI , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 05 (2025): Volume 02 Issue 05
- Bagus Candra, Minh Thu Nguyen, A Comprehensive Evaluation Of Shekar: An Open-Source Python Framework For State-Of-The-Art Persian Natural Language Processing And Computational Linguistics , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 10 (2025): Volume 02 Issue 10
- Prof. Michael T. Edwards, ENHANCING AI-CYBERSECURITY EDUCATION: DEVELOPMENT OF AN AI-BASED CYBERHARASSMENT DETECTION LABORATORY EXERCISE , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 02 (2025): Volume 02 Issue 02
- Adrian Velasco, Meera Narayan, REVOLUTIONIZING SILICON PHOTONIC DEVICE DESIGN THROUGH DEEP GENERATIVE MODELS: AN INVERSE APPROACH AND EMERGING TRENDS , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 06 (2025): Volume 02 Issue 06
You may also start an advanced similarity search for this article.