Securing Deep Neural Networks: A Life-Cycle Perspective On Trojan Attacks And Defensive Measures
Abstract
As Deep Neural Networks (DNNs) become increasingly integrated into critical systems—from healthcare diagnostics to autonomous vehicles—their vulnerability to malicious attacks has emerged as a serious security concern. Among these threats, Trojan attacks pose a unique risk by embedding hidden triggers during training that activate malicious behavior during inference. This paper presents a comprehensive life-cycle perspective on the security of DNNs, examining vulnerabilities across model development, training, deployment, and maintenance stages. We systematically categorize Trojan attack vectors, analyze real-world case studies, and evaluate the efficacy of current defense mechanisms, including pruning, fine-tuning, input filtering, and model certification. Furthermore, we propose a proactive framework for embedding security at each stage of the DNN life cycle, aiming to guide researchers and developers toward more resilient AI systems. Our findings highlight the importance of integrating security as a design principle rather than a reactive afterthought.
Keywords
Similar Articles
- Dr. Aris Thorne, Generating Dual-Identity Face Impersonations with Generative Adversarial Networks: An Adversarial Attack Methodology , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 10 (2025): Volume 02 Issue 10
- Dr. Kenji Yamamoto, Prof. Lijuan Wang, LEVERAGING DEEP LEARNING IN SURVIVAL ANALYSIS FOR ENHANCED TIME-TO-EVENT PREDICTION , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 05 (2025): Volume 02 Issue 05
- Dr. Larian D. Venorth, Prof. Elias J. Vance, A Machine Learning Approach to Identifying Maternal Risk Factors for Congenital Heart Disease , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 08 (2025): Volume 02 Issue 08
- Severov Arseni Vasilievich, Artyom V. Smirnov, Architecting Real-Time Risk Stratification in the Insurance Sector: A Deep Convolutional and Recurrent Neural Network Framework for Dynamic Predictive Modeling , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 10 (2025): Volume 02 Issue 10
- Dr. Mateo Alvarez, Integrative Perspectives On Identity, Authentication, And Privacy: From RFID Security Protocols To Facial Biometric Representations , International Journal of Advanced Artificial Intelligence Research: Vol. 3 No. 01 (2026): Volume 03 Issue 01
- Dr. Leila K. Moreno, Integrated Real-Time Fraud Detection and Response: A Streaming Analytics Framework for Financial Transaction Security , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 11 (2025): Volume 02 Issue 11
- Sara Rossi, Samuel Johnson, NEUROSYMBOLIC AI: MERGING DEEP LEARNING AND LOGICAL REASONING FOR ENHANCED EXPLAINABILITY , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 06 (2025): Volume 02 Issue 06
- Adrian Velasco, Meera Narayan, REVOLUTIONIZING SILICON PHOTONIC DEVICE DESIGN THROUGH DEEP GENERATIVE MODELS: AN INVERSE APPROACH AND EMERGING TRENDS , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 06 (2025): Volume 02 Issue 06
- Dr. Lukas Reinhardt, Next-Generation Security Operations Centers: A Holistic Framework Integrating Artificial Intelligence, Federated Learning, and Sustainable Green Infrastructure for Proactive Threat Mitigation , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 09 (2025): Volume 02 Issue 09
- Dr. Alejandro Moreno, An Explainable, Context-Aware Zero-Trust Identity Architecture for Continuous Authentication in Hybrid Device Ecosystems , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 11 (2025): Volume 02 Issue 11
You may also start an advanced similarity search for this article.