Securing Deep Neural Networks: A Life-Cycle Perspective On Trojan Attacks And Defensive Measures
Abstract
As Deep Neural Networks (DNNs) become increasingly integrated into critical systems—from healthcare diagnostics to autonomous vehicles—their vulnerability to malicious attacks has emerged as a serious security concern. Among these threats, Trojan attacks pose a unique risk by embedding hidden triggers during training that activate malicious behavior during inference. This paper presents a comprehensive life-cycle perspective on the security of DNNs, examining vulnerabilities across model development, training, deployment, and maintenance stages. We systematically categorize Trojan attack vectors, analyze real-world case studies, and evaluate the efficacy of current defense mechanisms, including pruning, fine-tuning, input filtering, and model certification. Furthermore, we propose a proactive framework for embedding security at each stage of the DNN life cycle, aiming to guide researchers and developers toward more resilient AI systems. Our findings highlight the importance of integrating security as a design principle rather than a reactive afterthought.
Keywords
Similar Articles
- Olabayoji Oluwatofunmi Oladepo., Explainable Artificial Intelligence in Socio-Technical Contexts: Addressing Bias, Trust, and Interpretability for Responsible Deployment , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 09 (2025): Volume 02 Issue 09
- Nourhan F. Abdelrahman, Miguel Torres, CRAFTING DUAL-IDENTITY FACE IMPERSONATIONS USING GENERATIVE ADVERSARIAL NETWORKS: AN ADVERSARIAL ATTACK METHODOLOGY , International Journal of Advanced Artificial Intelligence Research: Vol. 1 No. 01 (2024): Volume 01 Issue 01
- Prof. Michael T. Edwards, ENHANCING AI-CYBERSECURITY EDUCATION: DEVELOPMENT OF AN AI-BASED CYBERHARASSMENT DETECTION LABORATORY EXERCISE , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 02 (2025): Volume 02 Issue 02
- Dr. Lucas M. Hoffmann, Dr. Aya El-Masry, ALIGNING EXPLAINABLE AI WITH USER NEEDS: A PROPOSAL FOR A PREFERENCE-AWARE EXPLANATION FUNCTION , International Journal of Advanced Artificial Intelligence Research: Vol. 1 No. 01 (2024): Volume 01 Issue 01
- Dr. Elias A. Petrova, AN EDGE-INTELLIGENT STRATEGY FOR ULTRA-LOW-LATENCY MONITORING: LEVERAGING MOBILENET COMPRESSION AND OPTIMIZED EDGE COMPUTING ARCHITECTURES , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 10 (2025): Volume 02 Issue 10
- Elena Volkova, Emily Smith, INVESTIGATING DATA GENERATION STRATEGIES FOR LEARNING HEURISTIC FUNCTIONS IN CLASSICAL PLANNING , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 04 (2025): Volume 02 Issue 04
- Bagus Candra, Minh Thu Nguyen, A Comprehensive Evaluation Of Shekar: An Open-Source Python Framework For State-Of-The-Art Persian Natural Language Processing And Computational Linguistics , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 10 (2025): Volume 02 Issue 10
- Olabayoji Oluwatofunmi Oladepo., Opeyemi Eebru Alao, EXPLAINABLE MACHINE LEARNING FOR FINANCIAL ANALYSIS , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 07 (2025): Volume 02 Issue 07
- Angelo soriano, Sheila Ann Mercado, The Convergence of AI And UVM: Advanced Methodologies for the Verification of Complex Low-Power Semiconductor Architectures , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 11 (2025): Volume 02 Issue 11
- Dr. Elena M. Ruiz, Integrating Big Data Architectures and AI-Powered Analytics into Mergers & Acquisitions Due Diligence: A Theoretical Framework for Value Measurement, Risk Detection, and Strategic Decision-Making , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 09 (2025): Volume 02 Issue 09
You may also start an advanced similarity search for this article.