The Pinnacle Research Journal of Scientific and Management Sciences

  1. Home
  2. Archives
  3. Vol. 2 No. 08 (2025): Volume 02 Issue 08
  4. Articles
The Pinnacle Research Journal of Scientific and Management Sciences

Article Details Page

The Dual Role of Bacterial Sialidases: Pathogenesis and Pharmacological Targeting

Authors

  • Dr. Miguel Ortega Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain

DOI:

https://doi.org/10.55640/

Keywords:

Bacterial Sialidases, Neuraminidase, Sialic Acid

Abstract

Sialic acids are a diverse family of nine-carbon acidic sugars that are typically found at the termini of glycoconjugates on eukaryotic cell surfaces and in secreted molecules [1, 2]. These ubiquitous sugars play crucial roles in numerous biological processes, including cell-cell recognition, immune responses, and host-pathogen interactions [1, 45]. Bacterial sialidases (also known as neuraminidases, EC 3.2.1.18) are enzymes that hydrolyze the glycosidic linkages of sialic acids, releasing free sialic acid [3, 7]. These enzymes are widely distributed among bacteria and exhibit diverse substrate specificities and biological functions [2, 7, 37]. Bacterial sialidases are involved in various aspects of bacterial physiology and pathogenesis, including nutrient acquisition, adhesion, immune evasion, and tissue invasion [6, 19, 24, 36]. Understanding the biological significance of bacterial sialidases is crucial for comprehending host-microbe interactions and developing strategies to combat bacterial infections. Furthermore, the unique properties of bacterial sialidases have led to their exploration for various biotechnological and therapeutic applications, such as in glycoconjugate engineering and as potential targets for antimicrobial therapies [7, 65]. This article reviews the biological roles of bacterial sialidases and discusses their current and potential applications.

References

Traving, C.; Schauer, R. Structure, function and metabolism of sialic acids. Cell. Mol. Life Sci. 1998, 54, 1330–1349.

Vimr, E.; Kalivoda, K.; Deszo, E.; Steenbergen, S. Diversity of microbial sialic acid metabolism. Microbiol. Mol. Biol. Rev. 2004, 68, 132–153.

Schwerdtfeger, S.; Melzig, M. Sialidases in biological systems. Pharmazie 2010, 65, 551–561.

Eneva, R.; Engibarov, S.; Abrashev, R.; Krumova, E.; Angelova, M. Sialic acids, sialoconjugates and enzymes of their metabolism in fungi. Biotechnol. Biotechnol. Equip. 2021, 35, 346–357.

Muñoz-Provencio, D.; Yebra, M. Gut microbial sialidases and their role in the metabolism of human milk sialylated glycans. Int. J. Mol. Sci. 2023, 24, 9994.

Juge, N.; Tailford, L.; Owen, C. Sialidases from gut bacteria: A mini-review. Biochem. Soc. Trans. 2016, 44, 166–175.

Kim, S.; Oh, D.; Kang, H.; Kwon, O. Features and applications of bacterial sialidases. Appl. Microbiol. Biotechnol. 2011, 91, 1–15.

Gaskell, A.; Crennell, S.; Taylor, G. The three domains of a bacterial sialidase: A beta propeller, an immunoglobulin module and galactose-binding jelly-roll. Structure 1995, 3, 1197–1205.

Quistgaard, E.; Thirup, S. Sequence and structural analysis of the Asp-box motif and Asp-box beta-propellers; a widespread propeller-type characteristic of the Vps10 domain family and several glycoside hydrolase families. BMC Struct. Biol. 2009, 9, 46.

Van Dijk, A.; Cyplenkova, N.; Dekker, P.; Efimova, Y. Novel Sialidases. Patent Application Number 20100167344, 1 July 2010.

Newstead, S.; Potter, J.; Wilson, J.; Xu, G.; Chien, C.; Watts, A.; Withers, S.; Taylor, G. The structure of Clostridium perfringens NanI sialidase and its catalytic intermediates. J. Biol. Chem. 2008, 283, 9080–9088.

Keil, J.; Rafn, G.; Turan, I.; Aljohani, M.; Sahebjam-Atabaki, R.; Sun, X. Sialidase Inhibitors with Different Mechanisms. J. Med. Chem. 2022, 65, 13574–13593.

Vilei, E.; Johansson, A.; Schlatter, Y.; Redhead, K.; Frey, J. Genetic and functional characterization of the NanA sialidase from Clostridium chauvoei. Vet. Res. 2011, 42, 1–9.

Eneva, R.; Engibarov, S.; Petrova, P.; Abrashev, R.; Strateva, T.; Kolyovska, V.; Abrashev, I. High production of neuraminidase by a Vibrio cholerae non-O1 strain—The first possible alternative to toxigenic producers. Appl. Biochem. Biotechnol. 2015, 176, 412–427.

Mochalova, L.; Korchagina, E.; Kurova, V.; Shtyria, I.; Gambaryan, A.; Bovin, N. Fluorescent assay for studying the substrate specificity of neuraminidase. Anal. Biochem. 2005, 341, 190–193.

Sakurada, K.; Ohta, T.; Hasegawa, M. Cloning, expression, and characterization of the Micromonospora viridifaciens neuraminidase gene in Streptomyces lividans. J. Bacteriol. 1992, 174, 6896–6903.

Kim, S.; Oh, D.; Kwon, O.; Kang, H. Identification and functional characterization of the NanH extracellular sialidase from Corynebacterium diphtheriae. J. Biochem. 2010, 147, 523–533.

Yamamoto, T.; Ugai, H.; Nakayama-Imaohji, H.; Tada, A.; Elahi, M.; Houchi, H.; Kuwahara, T. Characterization of a recombinant Bacteroides fragilis sialidase expressed in Escherichia coli. Anaerobe 2018, 50, 69–75.

Corfield, T. Bacterial sialidases: Roles in pathogenecty and nutrition. Glycobiology 1992, 2, 509–521.

Almagro-Moreno, S.; Boyd, E. Insights into the evolution of sialic acid catabolism among bacteria. BMC Evol. Biol. 2009, 26, 118.

Vimr, E. Unified Theory of Bacterial Sialometabolism: How and Why Bacteria Metabolize Host Sialic Acids. Int. Sch. Res. Not. 2013, 2013, 816713.

Chen, X.; Varki, A. Advances in the Biology and Chemistry of Sialic Acids. ACS Chem. Biol. 2010, 5, 163–176.

Todeschini, A.; Mendonça-Previato, L.; Previato, J.; Varki, A.; Halbeek, H. Trans-sialidase from Trypanosoma cruzi catalyzes sialoside hydrolysis with retention of configuration. Glycobiology 2000, 10, 213–221.

Severi, E.; Hood, D.; Thomas, G. Sialic acid utilization by bacterial pathogens. Microbiology 2007, 153, 2817–2822.

Yokoi, T.; Nishiyama, K.; Kushida, Y.; Uribayashi, K.; Kunihara, T.; Fujimoto, R.; Yamamoto, Y.; Ito, M.; Miki, T.; Haneda, T.; et al. O-acetylesterase activity of Bifidobacterium bifidum sialidase facilities the liberation of sialic acid and encourages the proliferation of sialic acid scavenging Bifidobacterium breve. Environ. Microbiol. Rep. 2022, 14, 637–645.

Chen, L.; Li, J.; Xiao, B. The role of sialidases in the pathogenesis of bacterial vaginosis and their use as a promising pharmacological target in bacterial vaginosis. Front. Cell Infec. Microbiol. 2024, 14, 1367233.

Gualdi, L.; Hayre, J.; Gerlini, A.; Bidossi, A.; Colomba, L.; Trappetti, C.; Pozzi, G.; Docquier, J.; Andrew, P.; Ricci, S.; et al. Regulation of neuraminidase expression in Streptococcus pneumoniae. BMC Microbiol. 2012, 12, 200.

Eneva, R.; Engibarov, S.; Gocheva, Y.; Mitova, S.; Arsov, A.; Petrov, K.; Abrashev, R.; Lazarkevich, I.; Petrova, P. Safe sialidase production by the saprophyte Oerskovia paurometabola: Gene sequence and enzyme purification. Molecules 2022, 27, 8922.

Li, J.; Evans, D.; Freedman, J.; McClane, B.A. NanR regulates nanI sialidase expression by Clostridium perfringens F4969, a human enteropathogenic strain. Infect. Immunn. 2017, 85, e00241-17.

Hoyer, L.; Roggentin, P.; Schauer, R.; Vimr, E. Purification and properties cloned Salmonela typhimurium LT-2 sialidase with virus-typical kinetic preference for sialyl α 2–3 linkages. J. Biochem. 1991, 110, 462–467.

Bateman, R.; Sharpe, M.; Singer, M.; Ellis, C. The effect of sepsis on the erythrocyte. Int. J. Mol. Sci. 2017, 18, 1932.

Iijima, R.; Takahashi, H.; Namme, R.; Ikegami, S.; Yamazaki, M. Novel biological function of sialic acid (N-acetylneuraminic acid) as a hydrogen peroxide scavenger. FEBS Lett. 2004, 561, 163–166.

Cacalano, G.; Kays, M.; Saiman, L.; Prince, A. Production of the Pseudomonas aeruginosa neuraminidase is increased under hyperosmolar conditions and is regulated by genes involved in alginate expression. J. Clin. Investig. 1992, 89, 1866–1874.

Almagro-Moreno, S.; Boyd, E. Sialic acid catabolism confers a competitive advantage to pathogenic Vibrio cholerae in the mouse intestine. Infect. Immun. 2009, 77, 3807–3816.

Lichtensteiger, C.; Vimr, E. Neuraminidase (sialidase) activity of Haemophilus parasuis. FEMS Microbiol. Lett. 1997, 152, 269–274.

Sudhakara, P.; Sellamuthu, I.; Aruni, A. Bacterial sialoglycosidases in virulence and pathogenesis. Pathogens 2019, 8, 39.

Abrashev, I.; Dulgerova, G. Neuraminidases (sialidases) from bacterial origin. Exp. Pathol. Parasitol. 2000, 4, 35–40.

Berčič, R.; Cizelj, I.; Dušanić, D.; Narat, M.; Zorman-Rojs, O.; Dovč, P.; Benčina, D. Neuraminidase of Mycoplasma synoviae desialylates heavy chain of the chicken immunoglobulin G and glycoproteins of chicken tracheal mucus. Avian Pathol. 2011, 40, 299–308.

Useh, N.; Arimie, D.; Balogun, E.; Ibrahim, N.; Nok, A.; Esievo, K. Desialylation modulates alkaline phosphatase activity in zebu cattle experimentally infected with Clostridium chauvoei: A novel report. Jord. J. Bio Sci. 2012, 5, 265–268.

Kastelic, S.; Bercic, R.L.; Cizelj, I.; Bencina, M.; Makrai, L.; Zorman-Rojs, O.; Narat, M.; Bisgaard, M.; Christiansen, H.; Bencina, D. Ornithobacterium rhinotracheale has neuraminidase activity causing desialylation of chicken and turkey serum and tracheal mucus glycoproteins. Vet. Microbiol. 2013, 162, 707–712.

Wong, A.; Grau, M.; Singh, A.; Woodiga, S.; King, S. Role of neuraminidase producing bacteria in exposing cryptic carbohydrate receptors for Streptococcus gordonii adherence. Infect. Immun. 2018, 86, e00068-18.

Hussain, M.; Hassan, M.; Shaik, N.; Iqbal, Z. The role of galactose in human health and disease. Cent. Eur. J. Med. 2012, 7, 409–419.

Wang, Q.; Chang, B.; Riley, T. Erysipelothrix rhusiopathiae. Vet. Microbiol. 2010, 140, 405–417.

Jost, B.; Songer, J.; Billington, S. Identification of a second Arcanobacterium pyogenes neuraminidase and involvement of neuraminidase activity in host cell adhesion. Infect. Immun. 2002, 70, 1106–1112.

Schauer, R. Sialic acids as regulators of molecular and cellular interactions. Curr. Opin. Struct. Biol. 2009, 19, 507–514.

Grewal, P.; Aziz, P.; Uchiyama, S.; Rubio, G.; Lardone, R.; Le, D.; Varki, N.; Nizet, V.; Marth, J. Inducing host protection in pneumococcal sepsis by preactivation of the Ashwell-Morell receptor. Proc. Natl. Acad. Sci. USA 2013, 110, 20218–20223.

Galen, J.; Ketley, J.; Fasano, A.; Richardson, S.; Wasserman, S.; Kaper, J. Role of Vibrio cholerae neuraminidase in the function of cholera toxin. Infect. Immun. 1992, 60, 406–415.

Moustafa, I.; Connaris, H.; Taylor, M.; Zaitsev, V.; Wilson, J.; Kiefel, M.; von Itzstein, M.; Tailor, G. Sialic acid recognition by Vibrio cholerae neuraminidase. J. Biol. Chem. 2004, 279, 40819–40826.

Soong, G.; Muir, A.; Gomez, M.I.; Waks, J.; Reddy, B.; Planet, P.; Singh, P.K.; Kanetko, Y.; Wolfgang, M.C.; Hsiao, Y.S.; et al. Bacterial neuraminidase facilitates mucosal infection by participating in biofilm production. J. Clin. Investig. 2006, 116, 2297–2305.

Xu, G.; Ryan, C.; Kiefel, M.; Wilson, J.; Taylor, G. Structural studies on the Pseudomonas aeruginosa sialidase-like enzyme PA2794 suggest substrate and mechanistic variations. J. Mol. Biol. 2009, 386, 828–840.

Downloads

Published

2025-08-01

How to Cite

The Dual Role of Bacterial Sialidases: Pathogenesis and Pharmacological Targeting. (2025). The Pinnacle Research Journal of Scientific and Management Sciences, 2(08), 1-6. https://doi.org/10.55640/

How to Cite

The Dual Role of Bacterial Sialidases: Pathogenesis and Pharmacological Targeting. (2025). The Pinnacle Research Journal of Scientific and Management Sciences, 2(08), 1-6. https://doi.org/10.55640/