LOCAL NODE COMPENSATION FOR ENHANCED STABILITY IN DISTRIBUTED SIGNED NETWORKS
Abstract
Multi-agent systems exhibiting both cooperative and antagonistic interactions, often modeled as signed networks, present unique challenges for achieving system stability and desired collective behaviors. Traditional consensus algorithms, primarily designed for purely cooperative networks, often fail in the presence of negative links, leading to phenomena like polarization or divergence. This article introduces a novel distributed stabilization strategy for signed networks based on local node compensation, effectively adding self-loops to individual agents. By leveraging this compensatory mechanism at each node, agents can autonomously adjust their dynamics to counteract the destabilizing effects of antagonistic connections, thereby promoting system stability. We detail the theoretical framework for incorporating self-loop compensation into standard agent dynamics and analyze its impact on the network's spectral properties. Hypothetical results demonstrate that this localized intervention significantly enhances the stability margin and convergence characteristics, offering a scalable and implementable solution for maintaining coherent behavior in complex signed multi-agent environments.
Keywords
References
Similar Articles
- Prof. Elena Rostova, Dr. Kenji Tanaka, Enhancing Stability in Distributed Signed Networks via Local Node Compensation , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 09 (2025): Volume 02 Issue 09
- Dr. Abdulrahman O. Nassar, Dr. Cheng-Hao Lin, CHARACTERIZING CORE-PERIPHERY STRUCTURES IN NETWORKS VIA PRINCIPAL COMPONENT ANALYSIS OF NEIGHBORHOOD-BASED BRIDGE NODE CENTRALITY , International Journal of Modern Computer Science and IT Innovations: Vol. 1 No. 01 (2024): Volume 01 Issue 01
- Prof. Isabella Rossi, Dr. Luis Fernando Páez, GEOSPATIAL ANOMALY DETECTION FOR ENHANCED SECURITY IN DELAY-TOLERANT NETWORKS , International Journal of Modern Computer Science and IT Innovations: Vol. 1 No. 01 (2024): Volume 01 Issue 01
- Tang Shu Qi, Autonomous Resilience: Integrating Generative AI-Driven Threat Detection with Adaptive Query Optimization in Distributed Ecosystems , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 11 (2025): Volume 02 Issue 11
- Jianhong Wei, Aaliyah M. Farouk, MITIGATING CONFIRMATION BIAS IN DEEP LEARNING WITH NOISY LABELS THROUGH COLLABORATIVE NETWORK TRAINING , International Journal of Modern Computer Science and IT Innovations: Vol. 1 No. 01 (2024): Volume 01 Issue 01
- Dr. Erik G. Johansson, Dr. Linnea K. Blomqvist, LEVERAGING PERSISTENCE AND GRAPH NEURAL NETWORKS FOR ENHANCED INFORMATION POPULARITY FORECASTING , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 04 (2025): Volume 02 Issue 04
- Dr. Sofia Duarte, Jiwon Park, SECURING LARGE-SCALE IOT NETWORKS: A FEDERATED TRANSFER LEARNING APPROACH FOR REAL-TIME INTRUSION DETECTION , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 06 (2025): Volume 02 Issue 06
- John A. Prescott, A Unified Framework for Time-Sensitive and Resilient In-Vehicle Communication: Integrating Automotive Ethernet, Wireless TSN, and IoTEnabled Vehicle Health Monitoring , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 08 (2025): Volume 02 Issue 08
- Dr. Julian C. Vance, Prof. Anya Sharma, Synergistic Integration of AI and Blockchain: A Framework for Decentralized and Trustworthy Systems , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 08 (2025): Volume 02 Issue 08
- Dr. Alexei Morozov, Prof. Kevin J. Donovan, The Transformative Impact of Containerization on Modern Web Development: An In-depth Analysis of Docker and Kubernetes Ecosystems , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 10 (2025): Volume 02 Issue 10
You may also start an advanced similarity search for this article.