MITIGATING CONFIRMATION BIAS IN DEEP LEARNING WITH NOISY LABELS THROUGH COLLABORATIVE NETWORK TRAINING
Abstract
Confirmation bias in deep learning arises when models trained on datasets with noisy labels tend to reinforce incorrect predictions, leading to suboptimal learning and reduced generalization performance. This paper proposes a collaborative network training framework to mitigate confirmation bias in the presence of label noise. In the proposed method, two networks are trained simultaneously, each selecting clean samples for the other to learn from. This cross-training strategy prevents individual networks from overfitting to noisy labels and helps preserve model diversity. The framework also incorporates a sample agreement mechanism and consistency regularization to further stabilize training and improve robustness. Experimental evaluations on benchmark datasets including CIFAR-10, CIFAR-100, and Clothing1M show that the proposed approach outperforms existing noise-robust training methods, achieving higher accuracy and better noise tolerance. The results validate the effectiveness of collaborative learning in reducing confirmation bias and improving model reliability under label noise.
Keywords
References
Similar Articles
- John M. Langley, Augmenting Data Quality and Model Reliability in Large-Scale Language and Code Models: A Hybrid Framework for Evaluation, Pretraining, and Retrieval-Augmented Techniques , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 09 (2025): Volume 02 Issue 09
- Dr. Mingyu L. Chen, Muhammad Siddiqui, CODE-SWITCHED RELATION EXTRACTION: A NOVEL DATASET AND TRAINING METHODOLOGY , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 02 (2025): Volume 02 Issue 02
- Dr. Elias R. Vance, Prof. Seraphina J. Choi, A Machine Learning Framework for Predicting Cardiovascular Disease Risk: A Comparative Analysis Using the UCI Heart Disease Dataset , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 10 (2025): Volume 02 Issue 10
- Sneha R. Patil, Dr. Liam O. Hughes, ENHANCED MALWARE DETECTION THROUGH FUNCTION PARAMETER ENCODING AND API DEPENDENCY MODELING , International Journal of Modern Computer Science and IT Innovations: Vol. 1 No. 01 (2024): Volume 01 Issue 01
- Dr. Alejandro Martínez, Explainable Artificial Intelligence As A Foundation For Trust, Sustainability, And Responsible Decision-Making Across Business And Healthcare Ecosystems , International Journal of Modern Computer Science and IT Innovations: Vol. 3 No. 01 (2026): Volume 03 Issue 01
- Alexander J. Morrison, Hyperautomation as an Institutional Catalyst: Integrating Generative Artificial Intelligence and Process Mining for the Transformation of Financial Workflows , International Journal of Modern Computer Science and IT Innovations: Vol. 3 No. 01 (2026): Volume 03 Issue 01
- Dr. Elena Marovic, Hyperautomation-Driven Financial Workflow Transformation: Integrating Generative Artificial Intelligence, Process Mining, and Enterprise Digital Architectures , International Journal of Modern Computer Science and IT Innovations: Vol. 3 No. 01 (2026): Volume 03 Issue 01
- Dr. Elena M. Petrovic, Dr. Rajan V. Subramaniam, A COMPREHENSIVE REVIEW AND EMPIRICAL ASSESSMENT OF DATA AUGMENTATION TECHNIQUES IN TIME-SERIES CLASSIFICATION , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 07 (2025): Volume 02 Issue 07
You may also start an advanced similarity search for this article.