ARCHITECTURAL AND SECURITY ASPECTS OF WIRELESS SENSOR NETWORKS: A COMPREHENSIVE REVIEW
Abstract
Wireless Sensor Networks (WSNs) have emerged as a pivotal technology for diverse applications, enabling ubiquitous data collection and environmental monitoring. Comprising spatially distributed autonomous devices, WSNs present unique challenges in terms of their architectural design, power management, and inherent security vulnerabilities. This review synthesizes extant literature to explore the fundamental system architectures, critical design considerations for extending network lifetime, and essential security protocols integral to robust WSN deployment and operation. By examining established research, this article aims to provide a comprehensive understanding of the foundational principles and ongoing challenges in engineering reliable and secure wireless sensor systems, informing future research and practical implementations in various domains from environmental monitoring to emergency response.
Keywords
References
Similar Articles
- Dr. Eleanor Vance, Dr. Kenji Sato, Architectural Frameworks and Security Challenges in Wireless Sensor Networks: A Critical Review , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 10 (2025): Volume 02 Issue 10
- Dr. Alejandro Moreno, Architectural Paradigms, Protocol Dynamics, And Security Implications In Wireless Sensor Networks: An Integrative And Critical Research Synthesis , International Journal of Intelligent Data and Machine Learning: Vol. 3 No. 01 (2026): Volume 03 Issue 01
- Elias J. Vance, Clara M. Soto, High-Frequency Data Driven Network Learning for Systemic Risk Analysis in Financial Markets , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 09 (2025): Volume 02 Issue 09
- Isabella Rossi, Elena Petrova, LEVERAGING QUANTUM CONVOLUTIONAL LAYERS FOR ENHANCED IMAGE CLASSIFICATION: AN EXAMINATION OF QUANVOLUTIONAL NEURAL NETWORK CHARACTERISTICS , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 06 (2025): Volume 02 Issue 06
- Yuki Nakamura, Isabella Romano, HYBRID DEEP LEARNING FOR TEXT CLASSIFICATION: INTEGRATING BIDIRECTIONAL GATED RECURRENT UNITS WITH CONVOLUTIONAL NEURAL NETWORKS , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 04 (2025): Volume 02 Issue 04
- Qi Xin, DEEP LEARNING FOR E‑COMMERCE RECOMMENDATIONS: CAPTURING LONG- AND SHORT-TERM USER PREFERENCES WITH CNN-BASED REPRESENTATION LEARNING , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 08 (2025): Volume 02 Issue 08
- Dr. Hannah Brown, Ahmed Al-Farsi, BRIDGING DEEP LEARNING AND ADAPTIVE SYSTEMS: A PERFORMANCE STUDY ON CIFAR-10 IMAGE CLASSIFICATION , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 03 (2025): Volume 02 Issue 03
- Prof. Jiao L. Shen, Kwa Kai Ming, A Hybrid Sentiment-Aware Machine Learning Framework for Real-Time Dynamic Pricing in E-Commerce. , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 11 (2025): Volume 02 Issue 11
- Dr. Julian E. Vance, Prof. Anya S. Petrova, Advancing Artificial Intelligence: An In-Depth Look at Machine Learning and Deep Learning Architectures, Methodologies, Applications, and Future Trends , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 09 (2025): Volume 02 Issue 09
- Bima Satria Nugraha, Professor Anindya larasati, Dr. Huỳnh Chí Dũng, Assessing The Interoperability And Semantic Readiness Of BIM And IFC Data For AI Integration In The Architecture, Engineering, And Construction Industry: A Systematic Review , International Journal of Intelligent Data and Machine Learning: Vol. 2 No. 11 (2025): Volume 02 Issue 11
You may also start an advanced similarity search for this article.