Deep Contextual Understanding: A Parameter-Efficient Large Language Model Approach To Fine-Grained Affective Computing
Abstract
Background: Traditional methods in Affective Computing often fail to capture the subtle, context-dependent shifts necessary for fine-grained emotion classification due to limited semantic understanding and high reliance on hand-crafted features. While Large Language Models (LLMs) offer superior contextual depth, their immense computational cost hinders domain-specific fine-tuning and practical deployment.
Methods: This study leverages a pre-trained Transformer-based LLM (comparable to RoBERTa-Large) and applies a Parameter-Efficient Fine-Tuning (PEFT) methodology, specifically Low-Rank Adaptation (LoRA), to a complex, multi-label dataset of 11 discrete emotional states. We systematically compare the performance of LoRA against a traditional Bi-LSTM baseline and a Full Fine-Tuning (FFT) LLM, while also conducting a detailed ablation study on LoRA's rank () and scaling factor () to determine the optimal balance between performance and efficiency.
Results: The LLM (PEFT-LoRA) model achieved a decisive performance increase, resulting in a score, outperforming the Bi-LSTM baseline by and, critically, marginally exceeding the performance of the FFT model (). The LoRA approach reduced the number of trainable parameters by (to million) and decreased training time by. Our hyperparameter analysis identified an optimal configuration of and, demonstrating that maximum performance does not require maximum parameter allocation.
Conclusion: LLMs are demonstrably superior for nuanced affective analysis. The PEFT-LoRA approach successfully overcomes the computational barrier, making state-of-the-art affective computing accessible and scalable. This efficiency enables the rapid development of specialized, low-latency AI agents, although future work must address the critical challenge of expanding to multimodal data and mitigating inherent model biases.
Keywords
References
Similar Articles
- Serhii Yakhin, Comparative Review of Clean Architecture and Vertical Slice Architecture Approaches for Enterprise .NET Applications , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 12 (2025): Volume 02 Issue 12
- Dr. Mateo Alvarez, Integrative Perspectives On Identity, Authentication, And Privacy: From RFID Security Protocols To Facial Biometric Representations , International Journal of Advanced Artificial Intelligence Research: Vol. 3 No. 01 (2026): Volume 03 Issue 01
- Dr. Jonathan K. Pierce, Modern Data Lakehouse Architectures: Integrating Cloud Warehousing, Analytics, and Scalable Data Management , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 12 (2025): Volume 02 Issue 12
- Nourhan F. Abdelrahman, Miguel Torres, CRAFTING DUAL-IDENTITY FACE IMPERSONATIONS USING GENERATIVE ADVERSARIAL NETWORKS: AN ADVERSARIAL ATTACK METHODOLOGY , International Journal of Advanced Artificial Intelligence Research: Vol. 1 No. 01 (2024): Volume 01 Issue 01
- Marcus T. Feldman, RECONSTRUCTING TRUST IN RFID INFRASTRUCTURES: A COMPREHENSIVE ANALYSIS OF SECURITY, PRIVACY, AND AUTHENTICATION IN CONTEMPORARY RADIO FREQUENCY IDENTIFICATION SYSTEMS , International Journal of Advanced Artificial Intelligence Research: Vol. 3 No. 02 (2026): Volume 03 Issue 02
- Dr. Michael Lawson, Dr. Victor Almeida, Securing Deep Neural Networks: A Life-Cycle Perspective On Trojan Attacks And Defensive Measures , International Journal of Advanced Artificial Intelligence Research: Vol. 1 No. 01 (2024): Volume 01 Issue 01
- Michael Andrew Thornton, Designing and Evaluating Low Latency Web APIs for High Transaction and Industrial Internet Systems: Architectural, Methodological, and Socio Technical Perspectives , International Journal of Advanced Artificial Intelligence Research: Vol. 3 No. 01 (2026): Volume 03 Issue 01
- Dr. Ayesha Siddiqui, ENHANCED IDENTIFICATION OF EQUATORIAL PLASMA BUBBLES IN AIRGLOW IMAGERY VIA 2D PRINCIPAL COMPONENT ANALYSIS AND INTERPRETABLE AI , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 02 (2025): Volume 02 Issue 02
- Prof. Robert J. Mitchell, EVALUATING A FOUNDATIONAL PROGRAM FOR CYBERSECURITY EDUCATION: A PILOT STUDY OF A 'CYBER BRIDGE' INITIATIVE , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 03 (2025): Volume 02 Issue 03
- Dr. Matteo Rossi, Dr. Aisha El-Sayed, META-LEARNING DRIVEN FEW-SHOT DIAGNOSTICS: ADDRESSING RARE DISEASE CLASSIFICATION IN MEDICAL AI , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 05 (2025): Volume 02 Issue 05
You may also start an advanced similarity search for this article.