International Journal of Advanced Artificial Intelligence Research

  1. Home
  2. Archives
  3. Vol. 2 No. 06 (2025): Volume 02 Issue 06
  4. Articles
International Journal of Advanced Artificial Intelligence Research

Article Details Page

REVOLUTIONIZING SILICON PHOTONIC DEVICE DESIGN THROUGH DEEP GENERATIVE MODELS: AN INVERSE APPROACH AND EMERGING TRENDS

Authors

  • Adrian Velasco Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
  • Meera Narayan Department of Applied Physics, Stanford University, Stanford, CA, USA

DOI:

https://doi.org/10.55640/ijaair-v02i06-02

Keywords:

Silicon Photonics, Deep Generative Models, Inverse Design, Photonic Device Optimization

Abstract

The design of silicon photonic devices has traditionally relied on iterative simulation-based methods, which are time-consuming and often limited in exploring the vast design space. Recent advancements in deep generative models have paved the way for a paradigm shift by enabling inverse design approaches that are both efficient and accurate. This study explores how deep generative networks, particularly variational autoencoders (VAEs) and generative adversarial networks (GANs), are revolutionizing the development of silicon photonic structures by mapping desired optical responses directly to geometrical configurations. The paper reviews current methodologies, evaluates their effectiveness in performance optimization, and identifies emerging trends such as physics-informed learning, hybrid generative-discriminative frameworks, and real-time feedback-based design evolution. This convergence of deep learning and photonics promises to accelerate innovation in optical communications, sensing, and integrated photonic circuits.

References

Aggarwal A, Mittal M, Battineni G. 2021. Generative adversarial network: an overview of theory and applications. International Journal of Information Management Data Insights 1(1):100004

Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y, Al-Shamma O, Santamaría J, Fadhel MA, Al-Amidie M, Farhan L. 2021. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data 8:53

Anstine DM, Isayev O. 2023. Generative models as an emerging paradigm in the chemical sciences. Journal of the American Chemical Society 145(16):8736-8750

Anzalchi J, Inigo P, Roy B. 2017. Application of photonics in next generation telecommunication satellites payloads.

Arjovsky M, Chintala S, Bottou L. 2017. Wasserstein GAN. Arxiv

Bank D, Koenigstein N, Giryes R. 2023. Autoencoders. In: Rokach L, Maimon O, Smueli E, eds. Machine Learning for Data Science Handbook: Data Mining and Knowledge Discovery Handbook. Cham: Springer. 353-374

Berente N, Gu B, Recker J, Santhanam R. 2021. Managing artificial intelligence. Mis Quarterly 45(3):1433-1450

Bobokulova MK. 2023. Importance of fiber optic devices in medicine. Multidisciplinary Journal of Science and Technology 3(5):212-216

Bogaerts W, Chrostowski L. 2018. Silicon photonics circuit design: methods, tools and challenges. Laser & Photonics Reviews 12(4):1700237

Borrelli NF. 2017. Microoptics technology: fabrication and applications of lens arrays and devices. Boca Raton: CRC Press.

Butt MA, Khonina SN, Kazanskiy NL. 2021. Recent advances in photonic crystal optical devices: a review. Optics & Laser Technology 142:107265

Capmany J, Pérez D. 2020. Programmable integrated photonics. England: Oxford University Press.

Casellas R, Nadal L, Martinez R, Vilalta R, Muñoz R, Svaluto Moreolo M. 2024. Photonic device programmability in support of autonomous optical networks. Journal of Optical Communications and Networking 16(8):D53–D63

Chandrasekar R, Lapin ZJ, Nichols AS, Braun RM, Fountain III AW. 2019. Photonic integrated circuits for department of defense-relevant chemical and biological sensing applications: state-of-the-art and future outlooks. Optical Engineering 58(2):020901

Chen J, Hao R, Nasidi I, Zhang H, Wang X, Jin S. 2023. Deep learning-based modelling of complex photonic crystal slow light waveguides. IEEE Journal of Selected Topics in Quantum Electronics 29(6):6101506

Chen M, Lupoiu R, Mao C, Huang D-H, Jiang J, Lalanne P, Fan JA. 2022. High speed simulation and freeform optimization of nanophotonic devices with physics-augmented deep learning. ACS Photonics 9(9):3110-3123

Chen F, Zheng J, Xing C, Sang J, Shen T. 2024. Applications of liquid crystal planer optical elements based on photoalignment technology in display and photonic devices. Displays 82:102632

Chung H, Miller OD. 2020a. High-NA achromatic metalenses by inverse design. Optics Express 28(5):6945-6965

Chung H, Miller OD. 2020b. Tunable metasurface inverse design for 80% switching efficiencies and 144 angular deflection. ACS Photonics 7(8):2236-2243

Deng Y, Ren S, Malof J, Padilla WJ. 2022. Deep inverse photonic design: a tutorial. Photonics and Nanostructures-Fundamentals and Applications 52:101070

Dey A. 2018. Semiconductor metal oxide gas sensors: a review. Materials Science and Engineering: B 229:206-217

Dizaji PS, Habibiyan H, Arabalibeik H. 2022. A miniaturized computational spectrometer with optimum number of nanophotonic filters: deep-learning autoencoding and inverse design-based implementation. Photonics and Nanostructures-Fundamentals and Applications 52:101057

Gao D, Ding W, Nieto-Vesperinas M, Ding X, Rahman M, Zhang T, Lim C, Qiu C-W. 2017. Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects. Light: Science & Applications 6:e17039

Gao L, Li X, Liu D, Wang L, Yu Z. 2019. A bidirectional deep neural network for accurate silicon color design. Advanced Materials 31:1905467

Gostimirovic D, Grinberg Y, Xu D-X, Liboiron-Ladouceur O. 2023. Improving fabrication fidelity of integrated nanophotonic devices using deep learning. ACS Photonics 10(6):1953-1961

Goutzoulis AP. 2021. Design and fabrication of acousto-optic devices. Boca Raton: CRC Press.

Guo X, Xu X, Li Y, Huang W. 2022. Extendable neural network and flexible extendable neural network in nanophotonics. Optics Communications 508:127671

Head S, Keshavarz Hedayati M. 2022. Inverse design of distributed bragg reflectors using deep learning. Applied Sciences 12(10):4877

Ho J, Jain A, Abbeel P. 2020. Denoising diffusion probabilistic models. Advances in Neural Information Processing Systems ArXiv

Hong Y, Nicholls DP. 2022. Data-driven design of thin-film optical systems using deep active learning. Optics Express 30:22901-22910

Hwang H-S, Lee M, Seok J. 2022. Deep reinforcement learning with a critic-value-based branch tree for the inverse design of two-dimensional optical devices. Applied Soft Computing 127:109386

Jackson PC. 2019. Introduction to artificial intelligence. Mineola: Courier Dover Publications.

Javaid M, Haleem A, Rab S, Singh RP, Suman R. 2021. Sensors for daily life: a review. Sensors International 2:100121

Jiang J, Chen M, Fan JA. 2021. Deep neural networks for the evaluation and design of photonic devices. Nature Reviews Materials 6:679-700

Jiang J, Fan JA. 2020. Multiobjective and categorical global optimization of photonic structures based on ResNet generative neural networks. Nanophotonics 10(1):361-369

Jiang A, Yoshie O. 2022. A reinforcement learning method for optical thin-film design. IEICE Transactions on Electronics E105.C(2):95-101

Kang C, Park C, Lee M, Kang J, Jang MS, Chung H. 2024a. Large-scale photonic inverse design: computational challenges and breakthroughs. Nanophotonics 13(20):3765-3792

Kang C, Seo D, Boriskina SV, Chung H. 2024b. Adjoint method in machine learning: a pathway to efficient inverse design of photonic devices. Materials & Design 239:112737

Kerbl B, Kopanas G, Leimkühler T, Drettakis G. 2023. 3d gaussian splatting for real-time radiance field rendering. ACM Transactions on Graphics 42:4

Khaireh-Walieh A, Langevin D, Bennet P, Teytaud O, Moreau A, Wiecha PR. 2023. A newcomer’s guide to deep learning for inverse design in nano-photonics. Nanophotonics 12(24):4387-4414

Kiarashinejad Y, Abdollahramezani S, Adibi A. 2020. Deep learning approach based on dimensionality reduction for designing electromagnetic nanostructures. NPJ Computational Materials 6:12

Kim DY, Choi S, Cho H, Sun J-Y. 2019. Electroactive soft photonic devices for the synesthetic perception of color and sound. Advanced Materials 31:1804080

Kim W, Kim S, Lee M, Seok J. 2022. Inverse design of nanophotonic devices using generative adversarial networks. Engineering Applications of Artificial Intelligence 115:105259

Kim I, Martins RJ, Jang J, Badloe T, Khadir S, Jung H-Y, Kim H, Kim J, Genevet P, Rho J. 2021. Nanophotonics for light detection and ranging technology. Nature Nanotechnology 16:508-524

Kojima K, Tahersima MH, Koike-Akino T, Jha DK, Tang Y, Wang Y, Parsons K. 2021. Deep neural networks for inverse design of nanophotonic devices. Journal of Lightwave Technology 39(4):1010-1019

Li Y, Deng M, Liu Z, Peng P, Chen Y, Fang Z. 2022. Inverse design of unidirectional transmission nanostructures based on unsupervised machine learning. Advanced Optical Materials 10:2200127

Liu Z, Lin C-H, Hyun B-R, Sher C-W, Lv Z, Luo B, Jiang F, Wu T, Ho C-H, Kuo H-C+1 more. 2020. Micro-light-emitting diodes with quantum dots in display technology. Light: Science & Applications 9:83

Liu G-X, Liu J-F, Zhou W-J, Li L-Y, You C-L, Qiu C-W, Wu L. 2023. Inverse design in quantum nanophotonics: combining local-density-of-states and deep learning. Nanophotonics 12(11):1943-1955

Liu G-X, Liu J-F, Zhou W-J, Wu L. 2022. Inverse design local-density-of-states via deep learning in quantum nanophotonics.

Liu Z, Zhu D, Raju L, Cai W. 2021. Tackling photonic inverse design with machine learning. Advanced Science 8:2002923

Ma Z, Li Y. 2020. Parameter extraction and inverse design of semiconductor lasers based on the deep learning and particle swarm optimization method. Optics Express 28:21971-21981

Ma L, Wang S, Li Y, Wang G, Duan X. 2022. The accelerated design of the nanoantenna arrays by deep learning. Nanotechnology 33:485204

Mao S, Cheng L, Zhao C, Khan FN, Li Q, Fu H. 2021. Inverse design for silicon photonics: from iterative optimization algorithms to deep neural networks. Applied Sciences 11(9):3822

Mentzer M. 2017. Applied optics fundamentals and device applications: nano, MOEMS, and biotechnology. Boca Raton: CRC Press.

Mildenhall B, Srinivasan PP, Tancik M, Barron JT, Ramamoorthi R, Ng R. 2021. NeRF: representing scenes as neural radiance fields for view synthesis. Communications of the ACM 65(1):99-106

Ming Qing Y, Feng Ma H, Wei Wu L, Jun Cui T. 2020. Manipulating the light-matter interaction in a topological photonic crystal heterostructure. Optics Express 28:34904-34915

Molesky S, Lin Z, Piggott AY, Jin W, Vucković J, Rodriguez AW. 2018. Inverse design in nanophotonics. Nature Photonics 12:659-670

Moore EA, Smart LE. 2020. Optical properties of solids. In: Solid State Chemistry. Boca Raton: CRC Press. 283-314

Mroz AM, Posligua V, Tarzia A, Wolpert EH, Jelfs KE. 2022. Into the unknown: how computation can help explore uncharted material space. Journal of the American Chemical Society 144(41):18730-18743

Okamoto K. 2021. Fundamentals of optical waveguides. Amsterdam, Netherlands: Elsevier.

Ou Q-D, Li Y-Q, Tang J-X. 2016. Light manipulation in organic photovoltaics. Advanced Science 3:1600123

Pan Z, Pan X. 2023. Deep learning and adjoint method accelerated inverse design in photonics: a review. Photonics 10(7):852

Qiao J, Zhou G, Zhou Y, Zhang Q, Xia Z. 2019. Divalent europium-doped near-infrared-emitting phosphor for light-emitting diodes. Nature Communications 10:5267

Ren Y, Zhang L, Wang W, Wang X, Lei Y, Xue Y, Sun X, Zhang W. 2021. Genetic-algorithm-based deep neural networks for highly efficient photonic device design. Photonics Research 9:B247–B252

Sajedian I, Badloe T, Rho J. 2019. Optimisation of colour generation from dielectric nanostructures using reinforcement learning. Optics Express 27:5874-5883

Saleh BE, Teich MC. 2019. Fundamentals of photonics. New York: John Wiley & Sons.

Salehi A, Fu X, Shin D-H, So F. 2019. Recent advances in OLED optical design. Advanced Functional Materials 29:1808803

Sanchez-Lengeling B, Aspuru-Guzik A. 2018. Inverse molecular design using machine learning: generative models for matter engineering. Science 361(6400):360-365

Schubert EF. 2018. Light-emitting diodes (2018). Troy: E. Fred Schubert.

Shi R, Huang J, Li S, Niu L, Yang J. 2022. Forward prediction and inverse design of nanophotonic devices based on capsule network. IEEE Photonics Journal 14(4):1-8

So S, Mun J, Rho J. 2019. Simultaneous inverse design of materials and structures via deep learning: demonstration of dipole resonance engineering using core–shell nanoparticles. ACS Applied Materials & Interfaces 11(27):24264-24268

Song Y, Wang D, Qin J, Li J, Ye H, Zhang Z, Chen X, Zhang M, Boucouvalas AC. 2021. Physical information-embedded deep learning for forward prediction and inverse design of nanophotonic devices. Journal of Lightwave Technology 39(20):6498-6508

Song Y, Wang D, Ye H, Qin J, Zhang M. 2020. Wavelength controllable forward prediction and inverse design of nanophotonic devices using deep learning.

Sujecki S. 2018. Photonics modelling and design. Boca Raton: CRC Press.

Sutton RS, Barto AG. 2018. Reinforcement learning: an introduction. Cambridge: MIT Press.

Tang Y, Kojima K, Koike-Akino T, Wang Y, Wu P, Xie Y, Tahersima MH, Jha DK, Parsons K, Qi M. 2020. Generative deep learning model for inverse design of integrated nanophotonic devices. Laser & Photonics Reviews 14:2000287

Taud H, Mas J-F. 2018. Multilayer perceptron (MLP) In: Geomatic Approaches for Modeling Land Change Scenarios. Cham: Springer. 451-455

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł., Polosukhin I. 2017. Attention is all you need. Advances in Neural Information Processing Systems 30:5998-6008

Verganti R, Vendraminelli L, Iansiti M. 2020. Innovation and design in the age of artificial intelligence. Journal of Product Innovation Management 37:212-227

Wang X, Cui Y, Li T, Lei M, Li J, Wei Z. 2019. Recent advances in the functional 2d photonic and optoelectronic devices. Advanced Optical Materials 7:1801274

Wiecha PR, Arbouet A, Girard C, Muskens OL. 2021. Deep learning in nano-photonics: inverse design and beyond. Photonics Research 9:B182-B200

Zhang C, Lu Y. 2021. Study on artificial intelligence: the state of the art and future prospects. Journal of Industrial Information Integration 23:100224

Zhao C, Wang J, Mao S, Liu X, Kin W, Chan V, Fu H. 2023. End-to-end optimization for a compact optical neural network based on nanostructured 2 × 2 optical processors. IEEE Photonics Journal 15(5):1-8

Zhao Z, You J, Zhang J, Tang Y. 2022. Data-enhanced deep greedy optimization algorithm for the on-demand inverse design of tmdc-cavity heterojunctions. Nanomaterials 12(17):2976

Zheng L, Liu Z, Xin S, Chen Q, Ming J, Wu L, Xu J, Xu P, Liu K, Seeram R+1 more. 2024. Flexible electrolyte-gated transistor based on InZnSnO nanowires for self-adaptive applications. Applied Materials Today 41:102424

Zhu L, Li Y, Yang Z, Zong D, Liu Y. 2023. An on-demand inverse design method for nanophotonic devices based on generative model and hybrid optimization algorithm. Plasmonics 19:1279-1290

Zhu J, Liu X, Shi Q, He T, Sun Z, Guo X, Liu W, Sulaiman OB, Dong B, Lee C. 2019. Development trends and perspectives of future sensors and MEMS/NEMS. Micromachines 11(1):7

Downloads

Published

2025-06-18

How to Cite

REVOLUTIONIZING SILICON PHOTONIC DEVICE DESIGN THROUGH DEEP GENERATIVE MODELS: AN INVERSE APPROACH AND EMERGING TRENDS. (2025). International Journal of Advanced Artificial Intelligence Research, 2(06), 8-16. https://doi.org/10.55640/ijaair-v02i06-02

How to Cite

REVOLUTIONIZING SILICON PHOTONIC DEVICE DESIGN THROUGH DEEP GENERATIVE MODELS: AN INVERSE APPROACH AND EMERGING TRENDS. (2025). International Journal of Advanced Artificial Intelligence Research, 2(06), 8-16. https://doi.org/10.55640/ijaair-v02i06-02