4
Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
4
Department of Applied Physics, Stanford University, Stanford, CA, USA
Abstract
The design of silicon photonic devices has traditionally relied on iterative simulation-based methods, which are time-consuming and often limited in exploring the vast design space. Recent advancements in deep generative models have paved the way for a paradigm shift by enabling inverse design approaches that are both efficient and accurate. This study explores how deep generative networks, particularly variational autoencoders (VAEs) and generative adversarial networks (GANs), are revolutionizing the development of silicon photonic structures by mapping desired optical responses directly to geometrical configurations. The paper reviews current methodologies, evaluates their effectiveness in performance optimization, and identifies emerging trends such as physics-informed learning, hybrid generative-discriminative frameworks, and real-time feedback-based design evolution. This convergence of deep learning and photonics promises to accelerate innovation in optical communications, sensing, and integrated photonic circuits.
Keywords
Silicon Photonics, Deep Generative Models, Inverse Design, Photonic Device Optimization
References
📄Aggarwal A, Mittal M, Battineni G. 2021. Generative adversarial network: an overview of theory and applications. International Journal of Information Management Data Insights 1(1):100004
📄Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y, Al-Shamma O, Santamaría J, Fadhel MA, Al-Amidie M, Farhan L. 2021. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data 8:53
📄Anstine DM, Isayev O. 2023. Generative models as an emerging paradigm in the chemical sciences. Journal of the American Chemical Society 145(16):8736-8750
📄Anzalchi J, Inigo P, Roy B. 2017. Application of photonics in next generation telecommunication satellites payloads.
📄Arjovsky M, Chintala S, Bottou L. 2017. Wasserstein GAN. Arxiv
📄Bank D, Koenigstein N, Giryes R. 2023. Autoencoders. In: Rokach L, Maimon O, Smueli E, eds. Machine Learning for Data Science Handbook: Data Mining and Knowledge Discovery Handbook. Cham: Springer. 353-374
📄Berente N, Gu B, Recker J, Santhanam R. 2021. Managing artificial intelligence. Mis Quarterly 45(3):1433-1450
📄Bobokulova MK. 2023. Importance of fiber optic devices in medicine. Multidisciplinary Journal of Science and Technology 3(5):212-216
📄Bogaerts W, Chrostowski L. 2018. Silicon photonics circuit design: methods, tools and challenges. Laser & Photonics Reviews 12(4):1700237
📄Borrelli NF. 2017. Microoptics technology: fabrication and applications of lens arrays and devices. Boca Raton: CRC Press.
📄Capmany J, Pérez D. 2020. Programmable integrated photonics. England: Oxford University Press.
📄Casellas R, Nadal L, Martinez R, Vilalta R, Muñoz R, Svaluto Moreolo M. 2024. Photonic device programmability in support of autonomous optical networks. Journal of Optical Communications and Networking 16(8):D53–D63
📄Chandrasekar R, Lapin ZJ, Nichols AS, Braun RM, Fountain III AW. 2019. Photonic integrated circuits for department of defense-relevant chemical and biological sensing applications: state-of-the-art and future outlooks. Optical Engineering 58(2):020901
📄Chen J, Hao R, Nasidi I, Zhang H, Wang X, Jin S. 2023. Deep learning-based modelling of complex photonic crystal slow light waveguides. IEEE Journal of Selected Topics in Quantum Electronics 29(6):6101506
📄Chen M, Lupoiu R, Mao C, Huang D-H, Jiang J, Lalanne P, Fan JA. 2022. High speed simulation and freeform optimization of nanophotonic devices with physics-augmented deep learning. ACS Photonics 9(9):3110-3123
📄Chen F, Zheng J, Xing C, Sang J, Shen T. 2024. Applications of liquid crystal planer optical elements based on photoalignment technology in display and photonic devices. Displays 82:102632
📄Chung H, Miller OD. 2020a. High-NA achromatic metalenses by inverse design. Optics Express 28(5):6945-6965
📄Chung H, Miller OD. 2020b. Tunable metasurface inverse design for 80% switching efficiencies and 144 angular deflection. ACS Photonics 7(8):2236-2243
📄Deng Y, Ren S, Malof J, Padilla WJ. 2022. Deep inverse photonic design: a tutorial. Photonics and Nanostructures-Fundamentals and Applications 52:101070
📄Dey A. 2018. Semiconductor metal oxide gas sensors: a review. Materials Science and Engineering: B 229:206-217
📄Dizaji PS, Habibiyan H, Arabalibeik H. 2022. A miniaturized computational spectrometer with optimum number of nanophotonic filters: deep-learning autoencoding and inverse design-based implementation. Photonics and Nanostructures-Fundamentals and Applications 52:101057
📄Gao D, Ding W, Nieto-Vesperinas M, Ding X, Rahman M, Zhang T, Lim C, Qiu C-W. 2017. Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects. Light: Science & Applications 6:e17039
📄Gao L, Li X, Liu D, Wang L, Yu Z. 2019. A bidirectional deep neural network for accurate silicon color design. Advanced Materials 31:1905467
📄Gostimirovic D, Grinberg Y, Xu D-X, Liboiron-Ladouceur O. 2023. Improving fabrication fidelity of integrated nanophotonic devices using deep learning. ACS Photonics 10(6):1953-1961
📄Goutzoulis AP. 2021. Design and fabrication of acousto-optic devices. Boca Raton: CRC Press.
📄Guo X, Xu X, Li Y, Huang W. 2022. Extendable neural network and flexible extendable neural network in nanophotonics. Optics Communications 508:127671
📄Head S, Keshavarz Hedayati M. 2022. Inverse design of distributed bragg reflectors using deep learning. Applied Sciences 12(10):4877
📄Ho J, Jain A, Abbeel P. 2020. Denoising diffusion probabilistic models. Advances in Neural Information Processing Systems ArXiv
📄Hong Y, Nicholls DP. 2022. Data-driven design of thin-film optical systems using deep active learning. Optics Express 30:22901-22910
📄Hwang H-S, Lee M, Seok J. 2022. Deep reinforcement learning with a critic-value-based branch tree for the inverse design of two-dimensional optical devices. Applied Soft Computing 127:109386
📄Javaid M, Haleem A, Rab S, Singh RP, Suman R. 2021. Sensors for daily life: a review. Sensors International 2:100121
📄Jiang J, Chen M, Fan JA. 2021. Deep neural networks for the evaluation and design of photonic devices. Nature Reviews Materials 6:679-700
📄Jiang J, Fan JA. 2020. Multiobjective and categorical global optimization of photonic structures based on ResNet generative neural networks. Nanophotonics 10(1):361-369
📄Jiang A, Yoshie O. 2022. A reinforcement learning method for optical thin-film design. IEICE Transactions on Electronics E105.C(2):95-101
📄Kang C, Park C, Lee M, Kang J, Jang MS, Chung H. 2024a. Large-scale photonic inverse design: computational challenges and breakthroughs. Nanophotonics 13(20):3765-3792
📄Kang C, Seo D, Boriskina SV, Chung H. 2024b. Adjoint method in machine learning: a pathway to efficient inverse design of photonic devices. Materials & Design 239:112737
📄Kerbl B, Kopanas G, Leimkühler T, Drettakis G. 2023. 3d gaussian splatting for real-time radiance field rendering. ACM Transactions on Graphics 42:4
📄Khaireh-Walieh A, Langevin D, Bennet P, Teytaud O, Moreau A, Wiecha PR. 2023. A newcomer’s guide to deep learning for inverse design in nano-photonics. Nanophotonics 12(24):4387-4414
📄Kiarashinejad Y, Abdollahramezani S, Adibi A. 2020. Deep learning approach based on dimensionality reduction for designing electromagnetic nanostructures. NPJ Computational Materials 6:12
📄Kim DY, Choi S, Cho H, Sun J-Y. 2019. Electroactive soft photonic devices for the synesthetic perception of color and sound. Advanced Materials 31:1804080
📄Kim W, Kim S, Lee M, Seok J. 2022. Inverse design of nanophotonic devices using generative adversarial networks. Engineering Applications of Artificial Intelligence 115:105259
📄Kim I, Martins RJ, Jang J, Badloe T, Khadir S, Jung H-Y, Kim H, Kim J, Genevet P, Rho J. 2021. Nanophotonics for light detection and ranging technology. Nature Nanotechnology 16:508-524
📄Kojima K, Tahersima MH, Koike-Akino T, Jha DK, Tang Y, Wang Y, Parsons K. 2021. Deep neural networks for inverse design of nanophotonic devices. Journal of Lightwave Technology 39(4):1010-1019
📄Li Y, Deng M, Liu Z, Peng P, Chen Y, Fang Z. 2022. Inverse design of unidirectional transmission nanostructures based on unsupervised machine learning. Advanced Optical Materials 10:2200127
📄Liu Z, Lin C-H, Hyun B-R, Sher C-W, Lv Z, Luo B, Jiang F, Wu T, Ho C-H, Kuo H-C+1 more. 2020. Micro-light-emitting diodes with quantum dots in display technology. Light: Science & Applications 9:83
📄Liu G-X, Liu J-F, Zhou W-J, Li L-Y, You C-L, Qiu C-W, Wu L. 2023. Inverse design in quantum nanophotonics: combining local-density-of-states and deep learning. Nanophotonics 12(11):1943-1955
📄Liu G-X, Liu J-F, Zhou W-J, Wu L. 2022. Inverse design local-density-of-states via deep learning in quantum nanophotonics.
📄Liu Z, Zhu D, Raju L, Cai W. 2021. Tackling photonic inverse design with machine learning. Advanced Science 8:2002923
📄Ma Z, Li Y. 2020. Parameter extraction and inverse design of semiconductor lasers based on the deep learning and particle swarm optimization method. Optics Express 28:21971-21981
📄Ma L, Wang S, Li Y, Wang G, Duan X. 2022. The accelerated design of the nanoantenna arrays by deep learning. Nanotechnology 33:485204
📄Mao S, Cheng L, Zhao C, Khan FN, Li Q, Fu H. 2021. Inverse design for silicon photonics: from iterative optimization algorithms to deep neural networks. Applied Sciences 11(9):3822
📄Mentzer M. 2017. Applied optics fundamentals and device applications: nano, MOEMS, and biotechnology. Boca Raton: CRC Press.
📄Mildenhall B, Srinivasan PP, Tancik M, Barron JT, Ramamoorthi R, Ng R. 2021. NeRF: representing scenes as neural radiance fields for view synthesis. Communications of the ACM 65(1):99-106
📄Ming Qing Y, Feng Ma H, Wei Wu L, Jun Cui T. 2020. Manipulating the light-matter interaction in a topological photonic crystal heterostructure. Optics Express 28:34904-34915
📄Molesky S, Lin Z, Piggott AY, Jin W, Vucković J, Rodriguez AW. 2018. Inverse design in nanophotonics. Nature Photonics 12:659-670
📄Moore EA, Smart LE. 2020. Optical properties of solids. In: Solid State Chemistry. Boca Raton: CRC Press. 283-314
📄Mroz AM, Posligua V, Tarzia A, Wolpert EH, Jelfs KE. 2022. Into the unknown: how computation can help explore uncharted material space. Journal of the American Chemical Society 144(41):18730-18743
📄Okamoto K. 2021. Fundamentals of optical waveguides. Amsterdam, Netherlands: Elsevier.
📄Ou Q-D, Li Y-Q, Tang J-X. 2016. Light manipulation in organic photovoltaics. Advanced Science 3:1600123
📄Pan Z, Pan X. 2023. Deep learning and adjoint method accelerated inverse design in photonics: a review. Photonics 10(7):852
📄Qiao J, Zhou G, Zhou Y, Zhang Q, Xia Z. 2019. Divalent europium-doped near-infrared-emitting phosphor for light-emitting diodes. Nature Communications 10:5267
📄Ren Y, Zhang L, Wang W, Wang X, Lei Y, Xue Y, Sun X, Zhang W. 2021. Genetic-algorithm-based deep neural networks for highly efficient photonic device design. Photonics Research 9:B247–B252
📄Sajedian I, Badloe T, Rho J. 2019. Optimisation of colour generation from dielectric nanostructures using reinforcement learning. Optics Express 27:5874-5883
📄Saleh BE, Teich MC. 2019. Fundamentals of photonics. New York: John Wiley & Sons.
📄Salehi A, Fu X, Shin D-H, So F. 2019. Recent advances in OLED optical design. Advanced Functional Materials 29:1808803
📄Sanchez-Lengeling B, Aspuru-Guzik A. 2018. Inverse molecular design using machine learning: generative models for matter engineering. Science 361(6400):360-365
📄Schubert EF. 2018. Light-emitting diodes (2018). Troy: E. Fred Schubert.
📄Shi R, Huang J, Li S, Niu L, Yang J. 2022. Forward prediction and inverse design of nanophotonic devices based on capsule network. IEEE Photonics Journal 14(4):1-8
📄So S, Mun J, Rho J. 2019. Simultaneous inverse design of materials and structures via deep learning: demonstration of dipole resonance engineering using core–shell nanoparticles. ACS Applied Materials & Interfaces 11(27):24264-24268
📄Song Y, Wang D, Qin J, Li J, Ye H, Zhang Z, Chen X, Zhang M, Boucouvalas AC. 2021. Physical information-embedded deep learning for forward prediction and inverse design of nanophotonic devices. Journal of Lightwave Technology 39(20):6498-6508
📄Song Y, Wang D, Ye H, Qin J, Zhang M. 2020. Wavelength controllable forward prediction and inverse design of nanophotonic devices using deep learning.
📄Sujecki S. 2018. Photonics modelling and design. Boca Raton: CRC Press.
📄Sutton RS, Barto AG. 2018. Reinforcement learning: an introduction. Cambridge: MIT Press.
📄Tang Y, Kojima K, Koike-Akino T, Wang Y, Wu P, Xie Y, Tahersima MH, Jha DK, Parsons K, Qi M. 2020. Generative deep learning model for inverse design of integrated nanophotonic devices. Laser & Photonics Reviews 14:2000287
📄Taud H, Mas J-F. 2018. Multilayer perceptron (MLP) In: Geomatic Approaches for Modeling Land Change Scenarios. Cham: Springer. 451-455
📄Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł., Polosukhin I. 2017. Attention is all you need. Advances in Neural Information Processing Systems 30:5998-6008
📄Verganti R, Vendraminelli L, Iansiti M. 2020. Innovation and design in the age of artificial intelligence. Journal of Product Innovation Management 37:212-227
📄Wang X, Cui Y, Li T, Lei M, Li J, Wei Z. 2019. Recent advances in the functional 2d photonic and optoelectronic devices. Advanced Optical Materials 7:1801274
📄Wiecha PR, Arbouet A, Girard C, Muskens OL. 2021. Deep learning in nano-photonics: inverse design and beyond. Photonics Research 9:B182-B200
📄Zhang C, Lu Y. 2021. Study on artificial intelligence: the state of the art and future prospects. Journal of Industrial Information Integration 23:100224
📄Zhao C, Wang J, Mao S, Liu X, Kin W, Chan V, Fu H. 2023. End-to-end optimization for a compact optical neural network based on nanostructured 2 × 2 optical processors. IEEE Photonics Journal 15(5):1-8
📄Zhao Z, You J, Zhang J, Tang Y. 2022. Data-enhanced deep greedy optimization algorithm for the on-demand inverse design of tmdc-cavity heterojunctions. Nanomaterials 12(17):2976
📄Zheng L, Liu Z, Xin S, Chen Q, Ming J, Wu L, Xu J, Xu P, Liu K, Seeram R+1 more. 2024. Flexible electrolyte-gated transistor based on InZnSnO nanowires for self-adaptive applications. Applied Materials Today 41:102424
📄Zhu L, Li Y, Yang Z, Zong D, Liu Y. 2023. An on-demand inverse design method for nanophotonic devices based on generative model and hybrid optimization algorithm. Plasmonics 19:1279-1290
📄Zhu J, Liu X, Shi Q, He T, Sun Z, Guo X, Liu W, Sulaiman OB, Dong B, Lee C. 2019. Development trends and perspectives of future sensors and MEMS/NEMS. Micromachines 11(1):7