The Convergence of AI And UVM: Advanced Methodologies for the Verification of Complex Low-Power Semiconductor Architectures
Abstract
Purpose: The exponential growth of complex semiconductor architectures, particularly for IoT, AI, and mobile computing, has made power consumption the primary design constraint. Low-power design techniques (LPDTs) like Dynamic Voltage and Frequency Scaling (DVFS), power gating, and clock gating, introduce significant verification challenges that traditional methodologies cannot adequately address. This article analyzes the existing "verification gap" and proposes an integrated methodological framework.
Methodology: This work conducts a comprehensive methodological review of current and emerging verification strategies. It analyzes the limitations of the standard Universal Verification Methodology (UVM) and conventional Design for Test (DFT) in low-power contexts. We then synthesize a novel framework integrating advanced UVM strategies (UVM-LP) with Artificial Intelligence (AI) and Machine Learning (ML) driven analytics.
Findings: The analysis indicates that standard UVM struggles with the state-space explosion of power domains and transitions. AI-driven approaches, including predictive analytics for test generation and active learning for power state analysis, show significant potential to optimize verification efforts, enhance coverage of critical corner cases, and reduce time-to-market. The synergy between UVM's structured environment and AI's intelligent optimization provides a robust solution.
Originality/Value: This article presents a holistic, integrated framework for low-power verification. It bridges the gap between structured verification (UVM) and intelligent automation (AI), offering a forward-looking perspective on managing the immense complexity of modern System-on-Chip (SoC) low-power design verification.
Β
Keywords
References
Similar Articles
- Dr. Lukas Reinhardt, Next-Generation Security Operations Centers: A Holistic Framework Integrating Artificial Intelligence, Federated Learning, and Sustainable Green Infrastructure for Proactive Threat Mitigation , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 09 (2025): Volume 02 Issue 09
- Dr. Alejandro Moreno, An Explainable, Context-Aware Zero-Trust Identity Architecture for Continuous Authentication in Hybrid Device Ecosystems , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 11 (2025): Volume 02 Issue 11
- Ashis Ghosh, FAILURE-AWARE ARTIFICIAL INTELLIGENCE: DESIGNING SYSTEMS THAT DETECT, CATEGORIZE, AND RECOVER FROM OPERATIONAL FAILURES , International Journal of Advanced Artificial Intelligence Research: Vol. 3 No. 01 (2026): Volume 03 Issue 01
- Dr. Jae-Won Kim, Dr. Sung-Ho Lee, NAVIGATING ALGORITHMIC EQUITY: UNCOVERING DIVERSITY AND INCLUSION INCIDENTS IN ARTIFICIAL INTELLIGENCE , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 07 (2025): Volume 02 Issue 07
- Severov Arseni Vasilievich, Artyom V. Smirnov, Architecting Real-Time Risk Stratification in the Insurance Sector: A Deep Convolutional and Recurrent Neural Network Framework for Dynamic Predictive Modeling , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 10 (2025): Volume 02 Issue 10
- Dwi Jatmiko, Huu Nguyen, AI-Guided Policy Learning For Hyperdimensional Sampling: Exploiting Expert Human Demonstrations From Interactive Virtual Reality Molecular Dynamics , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 10 (2025): Volume 02 Issue 10
- Dr. Elena M. Ruiz, Integrating Big Data Architectures and AI-Powered Analytics into Mergers & Acquisitions Due Diligence: A Theoretical Framework for Value Measurement, Risk Detection, and Strategic Decision-Making , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 09 (2025): Volume 02 Issue 09
- Dr. Alessia Romano, Prof. Marco Bianchi, DEVELOPING AI ASSISTANCE FOR INCLUSIVE COMMUNICATION IN ITALIAN FORMAL WRITING , International Journal of Advanced Artificial Intelligence Research: Vol. 1 No. 01 (2024): Volume 01 Issue 01
- Dr. Michael Lawson, Dr. Victor Almeida, Securing Deep Neural Networks: A Life-Cycle Perspective On Trojan Attacks And Defensive Measures , International Journal of Advanced Artificial Intelligence Research: Vol. 1 No. 01 (2024): Volume 01 Issue 01
- Prof. Michael T. Edwards, ENHANCING AI-CYBERSECURITY EDUCATION: DEVELOPMENT OF AN AI-BASED CYBERHARASSMENT DETECTION LABORATORY EXERCISE , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 02 (2025): Volume 02 Issue 02
You may also start an advanced similarity search for this article.