INVESTIGATING DATA GENERATION STRATEGIES FOR LEARNING HEURISTIC FUNCTIONS IN CLASSICAL PLANNING
Abstract
In classical planning, the efficiency and effectiveness of heuristic functions are crucial for guiding search algorithms toward optimal solutions. This study investigates various data generation strategies for training machine learning models to learn heuristic functions in classical planning domains. By comparing approaches such as random sampling, goal-directed sampling, and domain-specific guided data collection, the research evaluates their impact on the accuracy and generalizability of learned heuristics. Experimental results across benchmark planning problems reveal that the choice of data generation strategy significantly influences the performance of the resulting heuristics. The study provides insights into the trade-offs between data diversity, representativeness, and computational efficiency, contributing to the development of more robust learning-based planning systems.
Keywords
References
Similar Articles
- Angelo soriano, Sheila Ann Mercado, The Convergence of AI And UVM: Advanced Methodologies for the Verification of Complex Low-Power Semiconductor Architectures , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 11 (2025): Volume 02 Issue 11
- Prof. Michael T. Edwards, ENHANCING AI-CYBERSECURITY EDUCATION: DEVELOPMENT OF AN AI-BASED CYBERHARASSMENT DETECTION LABORATORY EXERCISE , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 02 (2025): Volume 02 Issue 02
- Mason Johnson, Forging Rich Multimodal Representations: A Survey of Contrastive Self-Supervised Learning , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 11 (2025): Volume 02 Issue 11
- John M. Davenport, AI-AUGMENTED FRAMEWORKS FOR DATA QUALITY VALIDATION: INTEGRATING RULE-BASED ENGINES, SEMANTIC DEDUPLICATION, AND GOVERNANCE TOOLS FOR ROBUST LARGE-SCALE DATA PIPELINES , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 08 (2025): Volume 02 Issue 08
- Dr. Elena M. Ruiz, Integrating Big Data Architectures and AI-Powered Analytics into Mergers & Acquisitions Due Diligence: A Theoretical Framework for Value Measurement, Risk Detection, and Strategic Decision-Making , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 09 (2025): Volume 02 Issue 09
- Farhad Nouri, Dr. Mohammadreza Nouri, ADAPTIVE SIMILARITY-DRIVEN APPROACHES FOR CONTINUAL LEARNING: BRIDGING TASK-AWARE AND TASK-FREE PARADIGMS , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 01 (2025): Volume 02 Issue 01
- Dr. Larian D. Venorth, Prof. Elias J. Vance, A Machine Learning Approach to Identifying Maternal Risk Factors for Congenital Heart Disease , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 08 (2025): Volume 02 Issue 08
- Dwi Jatmiko, Huu Nguyen, AI-Guided Policy Learning For Hyperdimensional Sampling: Exploiting Expert Human Demonstrations From Interactive Virtual Reality Molecular Dynamics , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 10 (2025): Volume 02 Issue 10
- Olabayoji Oluwatofunmi Oladepo., Explainable Artificial Intelligence in Socio-Technical Contexts: Addressing Bias, Trust, and Interpretability for Responsible Deployment , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 09 (2025): Volume 02 Issue 09
- Dr. Emily Roberts, Supply Chain 4.0: The Role of Artificial Intelligence in Enhancing Resilience and Operational Efficiency , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 08 (2025): Volume 02 Issue 08
You may also start an advanced similarity search for this article.