Supply Chain 4.0: The Role of Artificial Intelligence in Enhancing Resilience and Operational Efficiency
Abstract
The proliferation of Artificial Intelligence (AI) promises transformative potentials for supply chain management (SCM), yet empirical evidence on realized supply chain performance gains remains fragmented and context-dependent. This article presents a comprehensive conceptual investigation into how AI-driven innovations interact with traditional supply chain management practices to influence supply chain performance, resilience, and long-term value creation. Drawing exclusively on a curated selection of literature — spanning empirical studies on SCM practices and performance, machine‑learning applications in demand forecasting, and critical analyses of AI adoption barriers — this research identifies recurring patterns, tensions, and open questions. The analysis reveals that while AI-enabled capabilities (e.g., demand forecasting, supplier scouting, logistics optimization) can significantly augment supply chain responsiveness and resilience under dynamism (Belhadi et al., 2021; Bottani et al., 2019; Gao & Feng, 2023), their effectiveness is highly mediated by data quality, organizational readiness, integration scope, and governance (SupplyChainBrain, 2019). Traditional supply chain practices remain foundational: empirical studies continue to show that SCM practices contribute significantly to performance, whereas strategy alone often proves a weak predictor (Sukati et al., 2012). The paper concludes by proposing a conceptual integrative framework that maps prerequisites for effective AI‑SCM synergy, outlines potential trade‑offs, and suggests directions for future empirical research to validate and refine the framework.
Keywords
References
Similar Articles
- Dr. Elena M. Ruiz, Integrating Big Data Architectures and AI-Powered Analytics into Mergers & Acquisitions Due Diligence: A Theoretical Framework for Value Measurement, Risk Detection, and Strategic Decision-Making , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 09 (2025): Volume 02 Issue 09
- Elena Volkova, Emily Smith, INVESTIGATING DATA GENERATION STRATEGIES FOR LEARNING HEURISTIC FUNCTIONS IN CLASSICAL PLANNING , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 04 (2025): Volume 02 Issue 04
- Dr. Larian D. Venorth, Prof. Elias J. Vance, A Machine Learning Approach to Identifying Maternal Risk Factors for Congenital Heart Disease , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 08 (2025): Volume 02 Issue 08
- Dr. Kenji Yamamoto, Prof. Lijuan Wang, LEVERAGING DEEP LEARNING IN SURVIVAL ANALYSIS FOR ENHANCED TIME-TO-EVENT PREDICTION , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 05 (2025): Volume 02 Issue 05
- Dr. Matteo Rossi, Dr. Aisha El-Sayed, META-LEARNING DRIVEN FEW-SHOT DIAGNOSTICS: ADDRESSING RARE DISEASE CLASSIFICATION IN MEDICAL AI , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 05 (2025): Volume 02 Issue 05
- Dr. Alejandro Moreno, An Explainable, Context-Aware Zero-Trust Identity Architecture for Continuous Authentication in Hybrid Device Ecosystems , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 11 (2025): Volume 02 Issue 11
- Prof. Michael T. Edwards, ENHANCING AI-CYBERSECURITY EDUCATION: DEVELOPMENT OF AN AI-BASED CYBERHARASSMENT DETECTION LABORATORY EXERCISE , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 02 (2025): Volume 02 Issue 02
- Mason Johnson, Forging Rich Multimodal Representations: A Survey of Contrastive Self-Supervised Learning , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 11 (2025): Volume 02 Issue 11
- Dr. Mei-Ling Zhou, Dr. Haojie Xu, LEARNING RICH FEATURES WITHOUT LABELS: CONTRASTIVE APPROACHES IN MULTIMODAL ARTIFICIAL INTELLIGENCE SYSTEMS , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 04 (2025): Volume 02 Issue 04
- Olabayoji Oluwatofunmi Oladepo., Explainable Artificial Intelligence in Socio-Technical Contexts: Addressing Bias, Trust, and Interpretability for Responsible Deployment , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 09 (2025): Volume 02 Issue 09
You may also start an advanced similarity search for this article.