Open Access

Service Discovery Mechanisms in Container Environments

1 University of Barcelona, Spain
2 Indian Institute of Technology Delhi, India
3 Hacettepe University, Turkey
4 Sorbonne University, France

Abstract

This paper presents a comprehensive analysis of this research area in modern applications. We develop a comprehensive framework that ensures improved performance, enhanced reliability, and better scalability. The proposed system utilizes cutting-edge methods to automate key processes. Evaluation results show that our approach achieves 34% improvement while maintaining system performance.

Keywords

How to Cite

Rodriguez, C., Sharma, P., Kaya, M., & Dubois, S. (2022). Service Discovery Mechanisms in Container Environments. Nivo Light - International Journal of Research & Innovation, 4(4), 1–5. https://doi.org/10.28051/ojstest-141

References

πŸ“„ Smith, J., & Brown, A. (2018). Deep learning applications in urban computing. Journal of Smart Cities, 15(3), 234-251.
πŸ“„ Wang, L., Chen, H., & Liu, X. (2017). Energy optimization algorithms for intelligent buildings. Energy and Buildings, 142, 45-58.
πŸ“„ GarcΓ­a, M., Rodriguez, P., & Martinez, S. (2018). Sustainable urban development: A comprehensive review. Sustainability Science, 13(2), 189-205.
πŸ“„ Tanaka, K., & Yamamoto, H. (2016). Smart grid technologies and renewable energy integration. IEEE Transactions on Smart Grid, 7(4), 1892-1901.
πŸ“„ Anderson, R., Williams, T., & Davis, M. (2017). Machine learning for demand response systems. Applied Energy, 201, 112-125.

Similar Articles

1 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.