FAILURE-AWARE ARTIFICIAL INTELLIGENCE: DESIGNING SYSTEMS THAT DETECT, CATEGORIZE, AND RECOVER FROM OPERATIONAL FAILURES
Abstract
As artificial intelligence systems increasingly transition from controlled laboratory environments to real-world deployment, their ability to handle unexpected failures becomes a critical determinant of practical utility and safety. This paper introduces a comprehensive framework for failure-aware artificial intelligence, encompassing systematic mechanisms for detecting, categorizing, and responding to failures in deployed AI systems. We propose a three-tier failure taxonomy that distinguishes between input-level anomalies, processing-level errors, and output-level inconsistencies, each requiring distinct detection and recovery strategies. The proposed architecture integrates continuous self-monitoring components, confidence estimation modules, and adaptive recovery mechanisms that enable graceful degradation rather than catastrophic failure. Building upon prior work in modular robotic system architectures and patented approaches to dexterous task execution, we present design principles for building failure-resilient AI systems, including redundancy patterns, fallback hierarchies, and human-in-the-loop escalation protocols. Evaluation through simulated failure injection across multiple AI task domains demonstrates that failure-aware systems maintain operational continuity in 87% of induced failure scenarios, compared to 23% for conventional architectures. The framework provides practitioners with actionable guidelines for enhancing the robustness and reliability of deployed artificial intelligence systems across diverse application contexts.
Keywords
References
Similar Articles
- Dr. Larian D. Venorth, Prof. Elias J. Vance, A Machine Learning Approach to Identifying Maternal Risk Factors for Congenital Heart Disease , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 08 (2025): Volume 02 Issue 08
- Dr. Anya Sharma, Leveraging Geospatial Context and Population Attributes for Hyper-Personalized E-Commerce Recommendations , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 09 (2025): Volume 02 Issue 09
- Serhii Yakhin, Comparative Review of Clean Architecture and Vertical Slice Architecture Approaches for Enterprise .NET Applications , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 12 (2025): Volume 02 Issue 12
- Anjali Kale, FX Hedging Algorithms for Crypto-Native Companies , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 10 (2025): Volume 02 Issue 10
- Bagus Candra, Minh Thu Nguyen, A Comprehensive Evaluation Of Shekar: An Open-Source Python Framework For State-Of-The-Art Persian Natural Language Processing And Computational Linguistics , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 10 (2025): Volume 02 Issue 10
- Adam Smith, A UNIFIED FRAMEWORK FOR MULTI-MODAL HUMAN-MACHINE INTERACTION: PRINCIPLES AND DESIGN PATTERNS FOR ENHANCED USER EXPERIENCE , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 10 (2025): Volume 02 Issue 10
- Farhad Nouri, Dr. Mohammadreza Nouri, ADAPTIVE SIMILARITY-DRIVEN APPROACHES FOR CONTINUAL LEARNING: BRIDGING TASK-AWARE AND TASK-FREE PARADIGMS , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 01 (2025): Volume 02 Issue 01
- Severov Arseni Vasilievich, Artyom V. Smirnov, Architecting Real-Time Risk Stratification in the Insurance Sector: A Deep Convolutional and Recurrent Neural Network Framework for Dynamic Predictive Modeling , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 10 (2025): Volume 02 Issue 10
- Dr. Arvind Patel, Anamika Mishra, INTELLIGENT BARGAINING AGENTS IN DIGITAL MARKETPLACES: A FUSION OF REINFORCEMENT LEARNING AND GAME-THEORETIC PRINCIPLES , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 03 (2025): Volume 02 Issue 03
- Dr. Elara V. Sorenson, Deep Contextual Understanding: A Parameter-Efficient Large Language Model Approach To Fine-Grained Affective Computing , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 10 (2025): Volume 02 Issue 10
You may also start an advanced similarity search for this article.