FX Hedging Algorithms for Crypto-Native Companies
Abstract
Globalization of financial reporting has increased the need of a correct, efficient and harmonized reconciliation with varying Generally Accepted Accounting Principles (GAAP). The volatility of digital assets and fiat-based financial ecosystems takes on an additional dimension of complexity to crypto-native businesses in the form of cryptocurrency exchanges, custodians, and decentralized finance (DeFi) solutions. The increase in the use of cryptocurrencies to record transactions, as well as the use of fiat-based reporting, exposes these organizations to foreign exchange (FX) and digital asset valuation risks that are compounded by each other. The pre-existing instruments of reconciliation and hedging like forwards, options and swaps do not sufficiently take care of the real-time, decentralized, and high volatility nature of crypto environments.
The current paper presents a multi-GAAP reconciliation model that is AI-enabled to efficiently manage compliance in different jurisdictions by using machine learning, algorithmic FX hedging and intelligent automation. Through a comparison of the traditional process of reconciliation and the AI-powered one, as well as examination of the case-studies in the real-world scenario, the proposed model considers each financial model, technical infrastructure of technical environment, and regulatory parameters as a complex of elements that are integral parts of a single solution. The framework not only positions cross-border financial flows in the direction of greater financial transparency, but also manages to overcome the operational, legislative as well as technical turmoil to which crypto-native companies are exposed. The project advances a dynamic field, intelligent financial systems, and creates a scalable basis of future-proofed treasury and reporting processes within the digital asset economy.
Keywords
References
Similar Articles
- Dr. Lukas Reinhardt, Next-Generation Security Operations Centers: A Holistic Framework Integrating Artificial Intelligence, Federated Learning, and Sustainable Green Infrastructure for Proactive Threat Mitigation , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 09 (2025): Volume 02 Issue 09
- Dr. Michael Lawson, Dr. Victor Almeida, Securing Deep Neural Networks: A Life-Cycle Perspective On Trojan Attacks And Defensive Measures , International Journal of Advanced Artificial Intelligence Research: Vol. 1 No. 01 (2024): Volume 01 Issue 01
- Prof. Michael T. Edwards, ENHANCING AI-CYBERSECURITY EDUCATION: DEVELOPMENT OF AN AI-BASED CYBERHARASSMENT DETECTION LABORATORY EXERCISE , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 02 (2025): Volume 02 Issue 02
- Dr. Elena M. Ruiz, Integrating Big Data Architectures and AI-Powered Analytics into Mergers & Acquisitions Due Diligence: A Theoretical Framework for Value Measurement, Risk Detection, and Strategic Decision-Making , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 09 (2025): Volume 02 Issue 09
- Ashis Ghosh, FAILURE-AWARE ARTIFICIAL INTELLIGENCE: DESIGNING SYSTEMS THAT DETECT, CATEGORIZE, AND RECOVER FROM OPERATIONAL FAILURES , International Journal of Advanced Artificial Intelligence Research: Vol. 3 No. 01 (2026): Volume 03 Issue 01
- Dr. Larian D. Venorth, Prof. Elias J. Vance, A Machine Learning Approach to Identifying Maternal Risk Factors for Congenital Heart Disease , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 08 (2025): Volume 02 Issue 08
- Dr. Mateo Alvarez, Integrative Perspectives On Identity, Authentication, And Privacy: From RFID Security Protocols To Facial Biometric Representations , International Journal of Advanced Artificial Intelligence Research: Vol. 3 No. 01 (2026): Volume 03 Issue 01
- Dr. Emily Roberts, Supply Chain 4.0: The Role of Artificial Intelligence in Enhancing Resilience and Operational Efficiency , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 08 (2025): Volume 02 Issue 08
- Olabayoji Oluwatofunmi Oladepo., Explainable Artificial Intelligence in Socio-Technical Contexts: Addressing Bias, Trust, and Interpretability for Responsible Deployment , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 09 (2025): Volume 02 Issue 09
- Dr. Liu Wei, Zhang Yiming, Chen Xiaorui, E-COMMERCE RECOMMENDATIONS THROUGH GEOGRAPHIC CONTEXT AND POPULATION CHARACTERISTICS , International Journal of Advanced Artificial Intelligence Research: Vol. 1 No. 01 (2024): Volume 01 Issue 01
You may also start an advanced similarity search for this article.