FAILURE-AWARE ARTIFICIAL INTELLIGENCE: DESIGNING SYSTEMS THAT DETECT, CATEGORIZE, AND RECOVER FROM OPERATIONAL FAILURES
Abstract
As artificial intelligence systems increasingly transition from controlled laboratory environments to real-world deployment, their ability to handle unexpected failures becomes a critical determinant of practical utility and safety. This paper introduces a comprehensive framework for failure-aware artificial intelligence, encompassing systematic mechanisms for detecting, categorizing, and responding to failures in deployed AI systems. We propose a three-tier failure taxonomy that distinguishes between input-level anomalies, processing-level errors, and output-level inconsistencies, each requiring distinct detection and recovery strategies. The proposed architecture integrates continuous self-monitoring components, confidence estimation modules, and adaptive recovery mechanisms that enable graceful degradation rather than catastrophic failure. Building upon prior work in modular robotic system architectures and patented approaches to dexterous task execution, we present design principles for building failure-resilient AI systems, including redundancy patterns, fallback hierarchies, and human-in-the-loop escalation protocols. Evaluation through simulated failure injection across multiple AI task domains demonstrates that failure-aware systems maintain operational continuity in 87% of induced failure scenarios, compared to 23% for conventional architectures. The framework provides practitioners with actionable guidelines for enhancing the robustness and reliability of deployed artificial intelligence systems across diverse application contexts.
Keywords
References
Similar Articles
- Dr. Elena M. Ruiz, Integrating Big Data Architectures and AI-Powered Analytics into Mergers & Acquisitions Due Diligence: A Theoretical Framework for Value Measurement, Risk Detection, and Strategic Decision-Making , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 09 (2025): Volume 02 Issue 09
- Dr. Lukas Reinhardt, Next-Generation Security Operations Centers: A Holistic Framework Integrating Artificial Intelligence, Federated Learning, and Sustainable Green Infrastructure for Proactive Threat Mitigation , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 09 (2025): Volume 02 Issue 09
- Prof. Michael T. Edwards, ENHANCING AI-CYBERSECURITY EDUCATION: DEVELOPMENT OF AN AI-BASED CYBERHARASSMENT DETECTION LABORATORY EXERCISE , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 02 (2025): Volume 02 Issue 02
- Dr. Jakob Schneider, ALGORITHMIC INEQUITY IN JUSTICE: UNPACKING THE SOCIETAL IMPACT OF AI IN JUDICIAL DECISION-MAKING , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 01 (2025): Volume 02 Issue 01
- John M. Davenport, AI-AUGMENTED FRAMEWORKS FOR DATA QUALITY VALIDATION: INTEGRATING RULE-BASED ENGINES, SEMANTIC DEDUPLICATION, AND GOVERNANCE TOOLS FOR ROBUST LARGE-SCALE DATA PIPELINES , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 08 (2025): Volume 02 Issue 08
- Dr. Ayesha Siddiqui, ENHANCED IDENTIFICATION OF EQUATORIAL PLASMA BUBBLES IN AIRGLOW IMAGERY VIA 2D PRINCIPAL COMPONENT ANALYSIS AND INTERPRETABLE AI , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 02 (2025): Volume 02 Issue 02
- Olabayoji Oluwatofunmi Oladepo., Explainable Artificial Intelligence in Socio-Technical Contexts: Addressing Bias, Trust, and Interpretability for Responsible Deployment , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 09 (2025): Volume 02 Issue 09
- Dr. Jae-Won Kim, Dr. Sung-Ho Lee, NAVIGATING ALGORITHMIC EQUITY: UNCOVERING DIVERSITY AND INCLUSION INCIDENTS IN ARTIFICIAL INTELLIGENCE , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 07 (2025): Volume 02 Issue 07
- Dr. Elias T. Vance, Prof. Camille A. Lefevre, ENHANCING TRUST AND CLINICAL ADOPTION: A SYSTEMATIC LITERATURE REVIEW OF EXPLAINABLE ARTIFICIAL INTELLIGENCE (XAI) APPLICATIONS IN HEALTHCARE , International Journal of Advanced Artificial Intelligence Research: Vol. 2 No. 10 (2025): Volume 02 Issue 10
- Dr. Lucas M. Hoffmann, Dr. Aya El-Masry, ALIGNING EXPLAINABLE AI WITH USER NEEDS: A PROPOSAL FOR A PREFERENCE-AWARE EXPLANATION FUNCTION , International Journal of Advanced Artificial Intelligence Research: Vol. 1 No. 01 (2024): Volume 01 Issue 01
You may also start an advanced similarity search for this article.