Cloud-Orchestrated Ensemble Deep Learning Architectures for Predictive Modeling of Cryptocurrency Market Dynamics: A Theoretical, Empirical, and Cyber-Physical Systems Perspective
Abstract
The rapid expansion of cryptocurrency markets has generated unprecedented challenges for predictive modeling due to their extreme volatility, structural non-stationarity, decentralized governance, and sensitivity to technological, macroeconomic, and socio-political stimuli. Traditional econometric approaches have proven insufficient for capturing the nonlinear, regime-switching, and sentiment-driven characteristics inherent in digital asset markets. Concurrently, ensemble learning and deep neural architectures have demonstrated remarkable predictive capacity across diverse domains, including environmental forecasting, biomedical diagnostics, infrastructure monitoring, and cyber-physical security systems (Hansen and Salamon, 1990; Zhou, 2012; Shen et al., 2022; Fu et al., 2023). Recent advances have further emphasized the integration of ensemble deep learning with scalable cloud infrastructures to manage high-dimensional streaming data and real-time inference demands in volatile markets (Kanikanti et al., 2025).
This study develops a comprehensive, publication-ready research framework for predictive modeling of cryptocurrency trends using cloud-deployed ensemble deep learning systems. The investigation synthesizes theoretical foundations from ensemble theory, gradient boosting, stacking, and neural residual learning with contemporary developments in cloud computing, Internet of Things architectures, blockchain-based data integrity mechanisms, and cyber-physical security paradigms (Dietterich, 2000; He et al., 2016; Burhan et al., 2018; Attkan and Ranga, 2022). Unlike conventional studies limited to performance benchmarking, this research advances a multi-layered interpretive model that situates cryptocurrency forecasting within a broader technological ecosystem involving distributed ledger technologies, edge-cloud coordination, and privacy-preserving analytics.
The study contributes theoretically by reframing cryptocurrency forecasting as a cyber-physical data fusion challenge and practically by offering a scalable blueprint for secure, high-performance predictive analytics in digital asset markets. The research concludes by outlining directions for explainable ensemble systems, adaptive regime detection, federated learning extensions, and sustainability considerations in cloud-intensive modeling environments.
Keywords
References
Similar Articles
- Dr. Ahmed R. Mostafa, Prof. Mahmoud A. Taha, AFFORDABLE VISION-BASED SYSTEMS FOR REAL-TIME CHESSBOARD DIGITIZATION , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 01 (2025): Volume 02 Issue 01
- Dr. Arjun S. Patel, Prof. Elena D. Petrovna, CONVERGENT DATABASE ARCHITECTURES: MULTI-MODEL DESIGN AND QUERY OPTIMIZATION IN NEWSQL SYSTEMS , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 02 (2025): Volume 02 Issue 02
- Rahul van Dijk, Advancing Circular Business Models through Big Data and Technological Integration: Pathways for Sustainable Value Creation , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 12 (2025): Volume 02 Issue 12
- Dr. Carlos A. BenΓtez, Prof. Prashant Singh Baghel, UNVEILING AFFLUENCE: A BIG DATA PERSPECTIVE ON WEALTH ACCUMULATION AND DISTRIBUTION , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 06 (2025): Volume 02 Issue 06
- Dr. Rania E. El-Gamal, EMPIRICAL CHARACTERIZATION OF IOT FIRMWARE VERSION DIVERSITY AND PATCHING STATUS , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 03 (2025): Volume 02 Issue 03
- Victor E. Halden, Integrating AI-Driven Automation into Modern DevOps: Advancements, Challenges, and Strategic Implications in Software Engineering , International Journal of Modern Computer Science and IT Innovations: Vol. 3 No. 02 (2026): Volume 03 Issue 02
- Alistair J. Finch, Integrating Jira, Jenkins, and Azure DevOps to Optimize Software Release Pipelines , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 10 (2025): Volume 02 Issue 10
- John A. Prescott, A Unified Framework for Time-Sensitive and Resilient In-Vehicle Communication: Integrating Automotive Ethernet, Wireless TSN, and IoTEnabled Vehicle Health Monitoring , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 08 (2025): Volume 02 Issue 08
- Alistair J. Finch, Sustainable Development and Mechanical Performance of Natural FiberβReinforced Polymer Composites: Comprehensive Analysis, Methodologies, and Future Directions , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 05 (2025): Volume 02 Issue 05
- Dr. Abdulrahman O. Nassar, Dr. Cheng-Hao Lin, CHARACTERIZING CORE-PERIPHERY STRUCTURES IN NETWORKS VIA PRINCIPAL COMPONENT ANALYSIS OF NEIGHBORHOOD-BASED BRIDGE NODE CENTRALITY , International Journal of Modern Computer Science and IT Innovations: Vol. 1 No. 01 (2024): Volume 01 Issue 01
You may also start an advanced similarity search for this article.