Cloud-Orchestrated Ensemble Deep Learning Architectures for Predictive Modeling of Cryptocurrency Market Dynamics: A Theoretical, Empirical, and Cyber-Physical Systems Perspective
Abstract
The rapid expansion of cryptocurrency markets has generated unprecedented challenges for predictive modeling due to their extreme volatility, structural non-stationarity, decentralized governance, and sensitivity to technological, macroeconomic, and socio-political stimuli. Traditional econometric approaches have proven insufficient for capturing the nonlinear, regime-switching, and sentiment-driven characteristics inherent in digital asset markets. Concurrently, ensemble learning and deep neural architectures have demonstrated remarkable predictive capacity across diverse domains, including environmental forecasting, biomedical diagnostics, infrastructure monitoring, and cyber-physical security systems (Hansen and Salamon, 1990; Zhou, 2012; Shen et al., 2022; Fu et al., 2023). Recent advances have further emphasized the integration of ensemble deep learning with scalable cloud infrastructures to manage high-dimensional streaming data and real-time inference demands in volatile markets (Kanikanti et al., 2025).
This study develops a comprehensive, publication-ready research framework for predictive modeling of cryptocurrency trends using cloud-deployed ensemble deep learning systems. The investigation synthesizes theoretical foundations from ensemble theory, gradient boosting, stacking, and neural residual learning with contemporary developments in cloud computing, Internet of Things architectures, blockchain-based data integrity mechanisms, and cyber-physical security paradigms (Dietterich, 2000; He et al., 2016; Burhan et al., 2018; Attkan and Ranga, 2022). Unlike conventional studies limited to performance benchmarking, this research advances a multi-layered interpretive model that situates cryptocurrency forecasting within a broader technological ecosystem involving distributed ledger technologies, edge-cloud coordination, and privacy-preserving analytics.
The study contributes theoretically by reframing cryptocurrency forecasting as a cyber-physical data fusion challenge and practically by offering a scalable blueprint for secure, high-performance predictive analytics in digital asset markets. The research concludes by outlining directions for explainable ensemble systems, adaptive regime detection, federated learning extensions, and sustainability considerations in cloud-intensive modeling environments.
Keywords
References
Similar Articles
- Dr. Nurul H. Zulkifli, Dr. Farah M. Rahimi, ACCOUNTABLE DATA AUTHORIZATION IN CLOUD ENVIRONMENTS: AN IDENTITY-BASED ENCRYPTION FRAMEWORK WITH EQUALITY TESTING , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 01 (2025): Volume 02 Issue 01
- Dr. Sofia Duarte, Jiwon Park, SECURING LARGE-SCALE IOT NETWORKS: A FEDERATED TRANSFER LEARNING APPROACH FOR REAL-TIME INTRUSION DETECTION , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 06 (2025): Volume 02 Issue 06
- Dr. Alexei Morozov, Prof. Kevin J. Donovan, The Transformative Impact of Containerization on Modern Web Development: An In-depth Analysis of Docker and Kubernetes Ecosystems , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 10 (2025): Volume 02 Issue 10
- Dr. Elena MarkoviΔ, Hyperautomation as a Socio-Technical Paradigm: Integrating Robotic Process Automation, Artificial Intelligence, and Workforce Analytics for the Future Digital Enterprise , International Journal of Modern Computer Science and IT Innovations: Vol. 3 No. 01 (2026): Volume 03 Issue 01
- Sneha R. Patil, Dr. Liam O. Hughes, ENHANCED MALWARE DETECTION THROUGH FUNCTION PARAMETER ENCODING AND API DEPENDENCY MODELING , International Journal of Modern Computer Science and IT Innovations: Vol. 1 No. 01 (2024): Volume 01 Issue 01
- John M. Langley, Augmenting Data Quality and Model Reliability in Large-Scale Language and Code Models: A Hybrid Framework for Evaluation, Pretraining, and Retrieval-Augmented Techniques , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 09 (2025): Volume 02 Issue 09
- Dr. Elena M. Petrovic, Dr. Rajan V. Subramaniam, A COMPREHENSIVE REVIEW AND EMPIRICAL ASSESSMENT OF DATA AUGMENTATION TECHNIQUES IN TIME-SERIES CLASSIFICATION , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 07 (2025): Volume 02 Issue 07
- Prof. Isabella Rossi, Dr. Luis Fernando PΓ‘ez, GEOSPATIAL ANOMALY DETECTION FOR ENHANCED SECURITY IN DELAY-TOLERANT NETWORKS , International Journal of Modern Computer Science and IT Innovations: Vol. 1 No. 01 (2024): Volume 01 Issue 01
- Jianhong Wei, Aaliyah M. Farouk, MITIGATING CONFIRMATION BIAS IN DEEP LEARNING WITH NOISY LABELS THROUGH COLLABORATIVE NETWORK TRAINING , International Journal of Modern Computer Science and IT Innovations: Vol. 1 No. 01 (2024): Volume 01 Issue 01
- Dr. Elias R. Vance, Prof. Seraphina J. Choi, A Machine Learning Framework for Predicting Cardiovascular Disease Risk: A Comparative Analysis Using the UCI Heart Disease Dataset , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 10 (2025): Volume 02 Issue 10
You may also start an advanced similarity search for this article.