SECURING LARGE-SCALE IOT NETWORKS: A FEDERATED TRANSFER LEARNING APPROACH FOR REAL-TIME INTRUSION DETECTION
Abstract
The pervasive deployment of Internet of Things (IoT) devices has ushered in an era of unprecedented connectivity and data generation. However, this expansive network also presents a vast attack surface, making robust intrusion detection critical. Traditional centralized Intrusion Detection Systems (IDS) face significant challenges in large-scale IoT environments, including privacy concerns, communication overhead, and the sheer volume and heterogeneity of data. This article proposes an enhanced real-time intrusion detection framework that leverages the synergistic capabilities of Federated Learning (FL) and Transfer Learning (TL). The framework allows IoT devices to collaboratively train a global intrusion detection model without sharing raw data, thereby preserving privacy, while utilizing pre-trained knowledge to enhance detection capabilities and adapt to evolving threats. We discuss the architectural components, data handling strategies, and the integration of FL and TL, highlighting how this approach can significantly improve detection accuracy, reduce latency, and maintain data privacy in dynamic and resource-constrained large-scale IoT networks.
Keywords
References
Similar Articles
- Dr. Ahmed R. Mostafa, Prof. Mahmoud A. Taha, AFFORDABLE VISION-BASED SYSTEMS FOR REAL-TIME CHESSBOARD DIGITIZATION , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 01 (2025): Volume 02 Issue 01
- Prof. Lucas F. Oliveira, SM9-ENHANCED KEY-POLICY ATTRIBUTE-BASED ENCRYPTION: DESIGN, ANALYSIS, AND APPLICATIONS , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 06 (2025): Volume 02 Issue 06
- Svetlana Petrova, Beyond Hyperscale: The Socio-Technical Adaptation of Site Reliability Engineering for Enhanced Resilience in Critical Infrastructure , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 11 (2025): Volume 02 Issue 11
- Prof. Elena Rostova, Dr. Kenji Tanaka, Enhancing Stability in Distributed Signed Networks via Local Node Compensation , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 09 (2025): Volume 02 Issue 09
- Pedro C. Almeida, Prof. Laura B. Heinrich, LOCAL NODE COMPENSATION FOR ENHANCED STABILITY IN DISTRIBUTED SIGNED NETWORKS , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 04 (2025): Volume 02 Issue 04
- Dr. Alexei Morozov, Prof. Kevin J. Donovan, The Transformative Impact of Containerization on Modern Web Development: An In-depth Analysis of Docker and Kubernetes Ecosystems , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 10 (2025): Volume 02 Issue 10
- Dr. Abdulrahman O. Nassar, Dr. Cheng-Hao Lin, CHARACTERIZING CORE-PERIPHERY STRUCTURES IN NETWORKS VIA PRINCIPAL COMPONENT ANALYSIS OF NEIGHBORHOOD-BASED BRIDGE NODE CENTRALITY , International Journal of Modern Computer Science and IT Innovations: Vol. 1 No. 01 (2024): Volume 01 Issue 01
- Dr. Elias R. Vance, Prof. Seraphina J. Choi, A Machine Learning Framework for Predicting Cardiovascular Disease Risk: A Comparative Analysis Using the UCI Heart Disease Dataset , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 10 (2025): Volume 02 Issue 10
- Felicia S. Lee, A COMPARATIVE ANALYSIS OF SERVICE MESH PROXY ARCHITECTURES: FROM SIDECARS TO AMBIENT AND PROXYLESS MODELS IN CLOUD-NATIVE ENVIRONMENTS , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 10 (2025): Volume 02 Issue 10
- Dr. Elena R. Moretti, Intent-Aware Decentralized Identity and Zero-Trust Framework for Agentic AI Workloads , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 11 (2025): Volume 02 Issue 11
You may also start an advanced similarity search for this article.