GEOSPATIAL ANOMALY DETECTION FOR ENHANCED SECURITY IN DELAY-TOLERANT NETWORKS
Abstract
Delay-Tolerant Networks (DTNs) are designed to operate effectively in environments characterized by frequent disconnections, long delays, and intermittent connectivity. While their store-carry-forward paradigm enables communication in challenged environments, it also introduces unique security vulnerabilities, particularly concerning attacks that exploit spatial and temporal patterns of node mobility and contact. This article proposes and explores the feasibility of a geospatial anomaly detection framework to identify and monitor potential attack locations within a specific area of a DTN. By leveraging location information alongside network performance metrics, this approach aims to proactively detect malicious activities, such as black hole attacks or resource exhaustion, confined to geographical regions. The methodology encompasses data collection, feature engineering combining network and spatial data, and the application of anomaly detection algorithms. The hypothetical results suggest that such a system could significantly enhance DTN security by enabling targeted intervention and improving overall network resilience in challenged communication scenarios.
Keywords
References
Similar Articles
- Hakim Bin Abdullah, Marcus Tanaka, The Fusion of Enterprise Resource Planning and Artificial Intelligence: Leveraging SAP Systems for Predictive Supply Chain Resilience and Performance , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 07 (2025): Volume 02 Issue 07
- John A. Prescott, A Unified Framework for Time-Sensitive and Resilient In-Vehicle Communication: Integrating Automotive Ethernet, Wireless TSN, and IoTEnabled Vehicle Health Monitoring , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 08 (2025): Volume 02 Issue 08
- Dr. Rohan S. Whitaker, Predictive and Intelligent HVAC Systems: Integrative Frameworks for Performance, Maintenance, and Energy Optimization , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 10 (2025): Volume 02 Issue 10
- Svetlana Petrova, Beyond Hyperscale: The Socio-Technical Adaptation of Site Reliability Engineering for Enhanced Resilience in Critical Infrastructure , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 11 (2025): Volume 02 Issue 11
- John M. Langley, Augmenting Data Quality and Model Reliability in Large-Scale Language and Code Models: A Hybrid Framework for Evaluation, Pretraining, and Retrieval-Augmented Techniques , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 09 (2025): Volume 02 Issue 09
- Daniela Costa, Rafael Lima, Dynamic Deep Neural Network Partitioning For Low-Latency Edge-Assisted Video Analytics: A Learning-To-Partition Approach , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 10 (2025): Volume 02 Issue 10
- Felicia S. Lee, A COMPARATIVE ANALYSIS OF SERVICE MESH PROXY ARCHITECTURES: FROM SIDECARS TO AMBIENT AND PROXYLESS MODELS IN CLOUD-NATIVE ENVIRONMENTS , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 10 (2025): Volume 02 Issue 10
- Dr. Elena R. Moretti, Intent-Aware Decentralized Identity and Zero-Trust Framework for Agentic AI Workloads , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 11 (2025): Volume 02 Issue 11
- Dr. Rania E. El-Gamal, EMPIRICAL CHARACTERIZATION OF IOT FIRMWARE VERSION DIVERSITY AND PATCHING STATUS , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 03 (2025): Volume 02 Issue 03
- Dr. Nurul H. Zulkifli, Dr. Farah M. Rahimi, ACCOUNTABLE DATA AUTHORIZATION IN CLOUD ENVIRONMENTS: AN IDENTITY-BASED ENCRYPTION FRAMEWORK WITH EQUALITY TESTING , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 01 (2025): Volume 02 Issue 01
You may also start an advanced similarity search for this article.