The Fusion of Enterprise Resource Planning and Artificial Intelligence: Leveraging SAP Systems for Predictive Supply Chain Resilience and Performance
Abstract
Large-scale enterprise Java applications often rely on hundreds of third-party libraries. Over time, many of these libraries become outdated, vulnerable, or incompatible with newer environments. Manually managing these vulnerabilities is time-consuming, error-prone, and increasingly difficult as systems scale. This paper presents an AI-assisted approach to automate and prioritize the remediation of dependency vulnerabilities in enterprise systems. By integrating static dependency analysis, security advisories—including Common Vulnerabilities and Exposures (CVEs), which catalog publicly known software flaws—and machine learning models trained on historical resolution patterns, the system can recommend upgrade paths, detect potential breaking changes, and propose targeted refactoring strategies. We evaluate this framework on a real-world enterprise application with over 200 dependencies. Our approach achieves a 60% reduction in manual triage time and improves detection of latent security issues. Furthermore, integration with continuous integration/continuous deployment (CI/CD) pipelines, such as Jenkins, enables proactive and continuous monitoring of dependency health. These findings contribute to both the theory and practice of secure software maintenance in enterprise-scale Java systems.
Keywords
References
Similar Articles
- John A. Prescott, A Unified Framework for Time-Sensitive and Resilient In-Vehicle Communication: Integrating Automotive Ethernet, Wireless TSN, and IoTEnabled Vehicle Health Monitoring , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 08 (2025): Volume 02 Issue 08
- Dr. Abdulrahman O. Nassar, Dr. Cheng-Hao Lin, CHARACTERIZING CORE-PERIPHERY STRUCTURES IN NETWORKS VIA PRINCIPAL COMPONENT ANALYSIS OF NEIGHBORHOOD-BASED BRIDGE NODE CENTRALITY , International Journal of Modern Computer Science and IT Innovations: Vol. 1 No. 01 (2024): Volume 01 Issue 01
- Dr. Nurul H. Zulkifli, Dr. Farah M. Rahimi, ACCOUNTABLE DATA AUTHORIZATION IN CLOUD ENVIRONMENTS: AN IDENTITY-BASED ENCRYPTION FRAMEWORK WITH EQUALITY TESTING , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 01 (2025): Volume 02 Issue 01
- Dr. Erik G. Johansson, Dr. Linnea K. Blomqvist, LEVERAGING PERSISTENCE AND GRAPH NEURAL NETWORKS FOR ENHANCED INFORMATION POPULARITY FORECASTING , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 04 (2025): Volume 02 Issue 04
- Dr. Sofia Duarte, Jiwon Park, SECURING LARGE-SCALE IOT NETWORKS: A FEDERATED TRANSFER LEARNING APPROACH FOR REAL-TIME INTRUSION DETECTION , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 06 (2025): Volume 02 Issue 06
- Dr. Elena M. Petrovic, Dr. Rajan V. Subramaniam, A COMPREHENSIVE REVIEW AND EMPIRICAL ASSESSMENT OF DATA AUGMENTATION TECHNIQUES IN TIME-SERIES CLASSIFICATION , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 07 (2025): Volume 02 Issue 07
- Felicia S. Lee, A COMPARATIVE ANALYSIS OF SERVICE MESH PROXY ARCHITECTURES: FROM SIDECARS TO AMBIENT AND PROXYLESS MODELS IN CLOUD-NATIVE ENVIRONMENTS , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 10 (2025): Volume 02 Issue 10
- Tang Shu Qi, Autonomous Resilience: Integrating Generative AI-Driven Threat Detection with Adaptive Query Optimization in Distributed Ecosystems , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 11 (2025): Volume 02 Issue 11
- John M. Langley, Augmenting Data Quality and Model Reliability in Large-Scale Language and Code Models: A Hybrid Framework for Evaluation, Pretraining, and Retrieval-Augmented Techniques , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 09 (2025): Volume 02 Issue 09
- Jianhong Wei, Aaliyah M. Farouk, MITIGATING CONFIRMATION BIAS IN DEEP LEARNING WITH NOISY LABELS THROUGH COLLABORATIVE NETWORK TRAINING , International Journal of Modern Computer Science and IT Innovations: Vol. 1 No. 01 (2024): Volume 01 Issue 01
You may also start an advanced similarity search for this article.