LEVERAGING PERSISTENCE AND GRAPH NEURAL NETWORKS FOR ENHANCED INFORMATION POPULARITY FORECASTING
Abstract
Accurately forecasting the popularity of online information is critical for optimizing content delivery, recommendation systems, and network resource allocation. This paper introduces a novel framework that leverages temporal persistence patterns and graph neural networks (GNNs) to improve the prediction of information popularity. By modeling user-content interactions as dynamic graphs and incorporating historical popularity trends, our approach captures both structural and temporal dependencies. Extensive experiments on real-world social and content-sharing platforms demonstrate that the proposed method significantly outperforms traditional forecasting models in terms of accuracy and robustness. The results highlight the potential of combining graph-based learning with temporal analysis for intelligent information propagation modeling.
Keywords
References
Similar Articles
- Tang Shu Qi, Autonomous Resilience: Integrating Generative AI-Driven Threat Detection with Adaptive Query Optimization in Distributed Ecosystems , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 11 (2025): Volume 02 Issue 11
- John A. Prescott, A Unified Framework for Time-Sensitive and Resilient In-Vehicle Communication: Integrating Automotive Ethernet, Wireless TSN, and IoTEnabled Vehicle Health Monitoring , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 08 (2025): Volume 02 Issue 08
- Alistair J. Finch, Sustainable Development and Mechanical Performance of Natural Fiber–Reinforced Polymer Composites: Comprehensive Analysis, Methodologies, and Future Directions , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 05 (2025): Volume 02 Issue 05
- John Doe, Transforming Supply Chain Management Through Artificial Intelligence: A Holistic Theoretical Analysis , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 09 (2025): Volume 02 Issue 09
- Dr. Alejandro Martínez, Explainable Artificial Intelligence As A Foundation For Trust, Sustainability, And Responsible Decision-Making Across Business And Healthcare Ecosystems , International Journal of Modern Computer Science and IT Innovations: Vol. 3 No. 01 (2026): Volume 03 Issue 01
- Alexander J. Morrison, Hyperautomation as an Institutional Catalyst: Integrating Generative Artificial Intelligence and Process Mining for the Transformation of Financial Workflows , International Journal of Modern Computer Science and IT Innovations: Vol. 3 No. 01 (2026): Volume 03 Issue 01
- Dr. Elena Marovic, Hyperautomation-Driven Financial Workflow Transformation: Integrating Generative Artificial Intelligence, Process Mining, and Enterprise Digital Architectures , International Journal of Modern Computer Science and IT Innovations: Vol. 3 No. 01 (2026): Volume 03 Issue 01
- Dr. Emiliano R. Vassalli, Event-Driven Architectures in Fintech Systems: A Comprehensive Theoretical, Methodological, and Resilience-Oriented Analysis of Kafka-Centric Microservices , International Journal of Modern Computer Science and IT Innovations: Vol. 2 No. 10 (2025): Volume 02 Issue 10
You may also start an advanced similarity search for this article.