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ABSTRACT 

 

Context: Effective feedback is critical for novice programmers, but providing it in a timely and scalable manner poses 

a significant challenge in higher education [13], [14], [37]. Generative Artificial Intelligence (GenAI), particularly 

Large Language Models (LLMs) trained on code [9], [36], offers a promising avenue to automate this process [1], 

[22]. 

Objectives: This quasi-experimental study aimed to evaluate the usability, student perceptions, and academic impact 

of two distinct GenAI-assisted feedback tools, both powered by GPT-4o-mini: a conversational assistant (tutorB@t) 

and a platform-embedded tool integrated with a virtual code evaluator (tutorBot+). 

Methods: The study involved 91 undergraduate computer science students, with 37 assigned to the experimental AI-

assisted group. We measured student programming performance, passing rates, and user perception using the System 

Usability Scale (SUS) [6] to assess the perceived utility and ease of use of the developed tools. 

Results: Students highly valued the immediacy and accessibility of the AI feedback. Perception scores were positive, 

with tutorB@t achieving a SUS score of 70.6 and tutorBot+ scoring 65.2, and a high intent to reuse (81% and 79%, 

respectively). Crucially, despite positive perceptions, the study found no statistically significant difference in 

objective programming performance or passing rates between the groups. This outcome is attributed primarily to 

factors such as a lack of group homogeneity, external academic pressures, and occasional student misunderstanding 

of the GenAI-provided feedback. 

Conclusion: Timely, automated feedback from GenAI is highly valued by students for its accessibility. Yet, the 

current study suggests that design limitations (usability, student misunderstandings, external factors) may mask the 

direct academic impact, highlighting a need for refined integration and future research incorporating affective 

measures [15], [38] to fully understand and unlock the pedagogical potential of LLM-based feedback [33]. 
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INTRODUCTION 

1.1. Background: The Critical Role of Feedback in 

Programming Education 

Learning to code is fundamentally a recursive process 

that relies heavily on iterative practice, failure, and 

correction. For novice programmers, the journey from a 

conceptual understanding of an algorithm to a successful, 

working implementation is fraught with common pitfalls, 

logical errors, and syntax struggles. In this context, 

feedback is not merely a mechanism for grading; it is the 

essential catalyst for learning, development, and eventual 

mastery [13]. 

Effective feedback must possess three crucial qualities: it 

needs to be timely, arriving when the student is still 

focused on the problem; it must be targeted, addressing 

the specific misconception or error; and it needs to be 
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actionable, providing guidance on how to improve rather 

than just what is wrong [13], [25]. When feedback is 

delayed, students often move on to other tasks, and the 

cognitive link between the error and the correction is 

weakened, severely diminishing its pedagogical power 

[2]. Conversely, when feedback is prompt and high-

quality, it is associated with significantly enhanced 

student learning outcomes and self-efficacy [37], [14]. 

However, the reality of programming education in 

modern higher education settings—characterized by 

large class sizes and resource constraints—means that 

providing this level of personalized, high-quality, and 

timely feedback consistently is a massive logistical 

challenge [14]. Human instructors struggle to keep up 

with the volume of code submissions, leading to 

significant delays in grading and personalized guidance. 

This systemic delay creates a critical educational 

bottleneck, prompting the search for automated solutions. 

1.2. The Emergence of Generative AI (GenAI) in 

Education 

The advent of sophisticated Generative Artificial 

Intelligence (GenAI), particularly Large Language 

Models (LLMs), has offered a compelling and potentially 

transformative solution to this scaling problem [40], [18]. 

LLMs like those developed by OpenAI have 

demonstrated a remarkable ability to understand, 

generate, and, critically for this domain, reason about 

code [9], [36]. Evaluations suggest these models can 

successfully pass technical interviews, generate novel 

code snippets, and even fix complex bugs [36]. 

This capacity represents a significant step beyond earlier 

automated educational tools, such as basic error checkers 

or rule-based Intelligent Tutoring Systems (ITS) [16], 

[30]. Whereas prior systems relied on pre-defined 

knowledge bases and structured rules, GenAI offers the 

flexibility to synthesize human-like, natural language 

explanations and corrections tailored to a student's unique 

code submission and context [5]. This allows LLMs to 

function not just as evaluators but as genuine virtual 

tutors [4], capable of engaging in dialogue and offering 

nuanced, context-sensitive support. 

1.3. LLMs as Automated Feedback Tools 

The application of LLMs to generate feedback for 

programming assignments has recently become a prolific 

area of research [1]. Studies have explored their efficacy 

in automating the grading process [22], creating high-

quality hints [24], and serving as conversational 

assistants [10], [11]. 

These approaches generally fall into two categories, 

which inform the design of the tools investigated here: 

1. Conversational Chatbots: Tools like tutorB@t 

operate as standalone assistants, allowing students to 

paste code or ask general questions. They prioritize 

interactive dialogue and context-based guidance [4], 

[39]. 

2. Platform-Integrated Systems: Tools like 

tutorBot+ embed the GenAI directly into the learning 

management or programming environment. They 

typically ingest compiler errors or test results from an 

evaluator (like Judge0) and use this specific data to 

generate highly targeted feedback [27], [28]. 

Recent advancements have made LLMs more accessible. 

The introduction of models like GPT-4o-mini [21] 

provides a high-performing, yet cost-efficient, option. 

This model boasts significant reasoning capabilities 

compared to earlier generations while drastically 

reducing the computational cost per interaction. This 

makes the implementation of high-volume, real-time 

feedback systems pedagogically and economically 

feasible for large university programs. 

1.4. Identifying the Research Gap 

While the promise of GenAI in Computer Science 

education is clear, two critical gaps persist in the current 

literature: 

First, there is a distinct lack of comparative studies that 

simultaneously evaluate the efficacy of different LLM 

deployment mechanisms—specifically, a conversational 

chatbot versus a platform-embedded, non-conversational 

tool—within a single controlled educational context. 

Understanding how the interface design is associated 

with student interaction, perception, and learning 

outcomes is crucial for practitioners and tool developers 

[19]. 

Second, despite overwhelming evidence that students 

enjoy using GenAI tools and find them helpful [32], there 

remains a persistent uncertainty regarding whether this 

high satisfaction consistently predicts measurable, 

objective gains in academic performance. Many studies 

focus on subjective usability or qualitative engagement, 

leaving the core question of academic impact 

unanswered. 

This study directly addresses these gaps by implementing 

and testing two distinct feedback tools—tutorB@t and 

tutorBot+—both powered by the cost-effective yet 

powerful GPT-4o-mini [21], within a quasi-experimental 

setting. 

1.5. Research Questions and Study Overview 

This research sought to answer the following questions, 

using language appropriate for a correlational study: 

1. Is the perceived usability of both conversational 
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and platform-integrated GenAI feedback tools (tutorB@t 

and tutorBot+) acceptable to students, as measured by 

standardized usability metrics? 

2. Is the provision of automated, timely GenAI 

feedback, regardless of deployment method, associated 

with a statistically significant difference in student 

programming performance (e.g., passing rates or test 

success) compared to traditional methods? 

The remainder of this article details the pedagogical 

foundations underpinning effective feedback, the 

architectural design of the two tools, the methodology of 

the quasi-experimental study, the quantitative and 

qualitative results, and a robust discussion of the 

implications of the findings. 

II. Related Work 

2.1. Pedagogical Foundations of Effective 

Programming Feedback 

The philosophical foundation of our tool design rests on 

established principles of educational psychology and 

feedback theory. Hattie and Timperley [13] emphasized 

that effective feedback must answer four key questions: 

Where am I going? (goals), How am I going? (progress), 

Where to next? (directions), and critically, How can I 

close the gap? (actionable steps). GenAI is uniquely 

positioned to help students close the gap by providing 

highly specific, what-to-do-next advice directly related to 

their current code [33]. 

Furthermore, deep learning requires students to develop 

metacognition—the ability to monitor and regulate one's 

own thinking and learning processes [29], [26]. In 

programming, this involves debugging skills, self-

checking assumptions, and planning solutions. AI-driven 

feedback, unlike simple pass/fail tests, can foster 

metacognition by asking guiding questions or providing 

hints that nudge the student toward the solution without 

simply giving it away. 

Finally, we consider motivational design [15]. John 

Keller's ARCS Model (Attention, Relevance, 

Confidence, Satisfaction) suggests that technology must 

maintain a student's engagement to be effective [15]. 

Timely, personalized, and constructive feedback 

delivered by the AI addresses the "Confidence" and 

"Satisfaction" components by reducing the time spent 

blocked on trivial errors and providing a sense of 

personalized support, which can be highly motivating 

[38]. 

2.1.3. Feedback and the Cultivation of Metacognition: 

The Productive Struggle 

The process of debugging and problem-solving in 

programming is fundamentally a metacognitive exercise. 

Metacognition—often defined as 'thinking about 

thinking'—encompasses a set of cognitive skills vital for 

self-regulated learning and error recovery [29]. Schraw 

and Dennison defined metacognitive awareness along 

two dimensions: knowledge of cognition (what a learner 

knows about their own cognitive resources and 

strategies) and regulation of cognition (how a learner 

monitors and controls their learning processes) [29]. 

Effective feedback in programming must therefore target 

not just the solution, but the student's process of reaching 

that solution, promoting regulation of cognition through 

four distinct phases: 

1. Planning: Setting goals and selecting appropriate 

strategies (e.g., choosing a loop structure). 

2. Monitoring: Tracking progress, comparing 

current state to goals, and identifying obstacles (e.g., 

recognizing that a program is stuck in an infinite loop). 

3. Evaluation: Assessing the outcome of a strategy 

and determining if the final solution is correct and 

efficient (e.g., running the program and analyzing the 

output). 

4. Revision: Adjusting the plan and strategies based 

on the evaluation (i.e., debugging). 

Failure to achieve a solution often results in an impasse, 

which VanLehn argued is the critical precursor to 

learning [34]. An impasse-driven learning model 

suggests that the most profound learning occurs when a 

student recognizes that their current knowledge or 

strategy is insufficient, forcing them to engage in self-

repair and knowledge revision. 

The critical challenge for automated feedback systems, 

including GenAI, is to interrupt this impasse in a 

productive way. This is known as managing the 

Productive Struggle—providing just enough information 

to keep the student motivated (preventing abandonment) 

while withholding the complete solution to ensure they 

perform the necessary cognitive work (preventing over-

reliance) [33]. 

Traditional ITS systems managed this productive 

struggle via carefully curated hint sequences, often 

relying on structured rule sets or cognitive models [34]. 

In contrast, GenAI systems generate hints and 

explanations dynamically using natural language. This 

flexibility presents both a strength and a weakness: 

● Strength: GenAI can generate a wider variety of 

responses and adapt the tone, aligning with the "human 

tutor-style" feedback advocated by some researchers 

[24], [33]. 

● Weakness: The LLM's output is not inherently 
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optimized for metacognitive scaffolding. Without 

stringent prompt engineering, the feedback may become 

too verbose, increasing the student's extraneous cognitive 

load (information processing unrelated to learning the 

core concept) [33]. Alternatively, the LLM may 

inadvertently provide information that bypasses the 

productive struggle entirely, potentially leading to a 

quick fix but no deep learning [7]. 

Therefore, the efficacy of our two tools—the 

conversational tutorB@t and the integrated tutorBot+—

must be analyzed through the lens of which phase of 

metacognitive regulation they most effectively support 

and whether their interface design inherently manages the 

productive struggle. The conversational approach 

(tutorB@t) is often associated with supporting the 

Planning and Monitoring phases by allowing students to 

articulate their thought process and receive general 

conceptual guidance. Conversely, the integrated 

approach (tutorBot+) is primarily driven by compiler 

errors and test case failure, making it highly suitable for 

supporting the Evaluation and Revision phases, as its 

feedback is explicitly grounded in the execution 

outcome. 

The tension between these two models—flexibility and 

conceptual guidance (tutorB@t) versus rigid, execution-

grounded diagnosis (tutorBot+)—is central to 

understanding why high usability did not translate to 

performance gains in this study. If the AI is used to avoid 

the necessary productive struggle, then improved 

performance remains elusive, regardless of how friendly 

or accessible the tool is. 

2.2. Automated Feedback Systems and Intelligent 

Tutoring Systems (ITS) 

The concept of using technology to automate instruction 

and feedback has a long history, dating back to early 

Intelligent Tutoring Systems (ITS) [30]. These systems, 

built on cognitive models and production rules, aimed to 

provide individualized instruction and detailed error 

diagnosis [34]. Classic examples include systems that 

tracked student attempts and provided targeted hints 

based on pre-defined knowledge rules [16]. 

However, traditional ITS often suffered from a 

knowledge acquisition bottleneck—building and 

maintaining the domain knowledge base necessary to 

cover all possible student errors was incredibly labor-

intensive and challenging to scale across new problems 

or programming languages. 

GenAI fundamentally alters this landscape. Rather than 

relying on explicit programming of error models, LLMs 

leverage vast training data to infer common errors and 

generate novel, human-like diagnostic explanations [5]. 

This flexibility positions LLMs as "domain-general" 

tutors that can adapt instantly to new problems, thereby 

solving the scale and maintenance issues that plagued 

previous automated systems [33]. Studies suggest LLMs 

can successfully automate feedback and even generate 

hints styled after human tutors [24]. 

2.3. GenAI Implementation in Computer Science 

Education 

Current research highlights a bifurcation in how LLMs 

are applied to programming instruction: 

Conversational Interfaces (tutorB@t Model): Tools 

implemented as chatbots (e.g., ChatGPT, or course-

specific bots [10], [11]) are highly praised for their low 

barrier to entry and their ability to sustain a human-like 

dialogue [39]. They excel at providing immediate, 

flexible clarification on concepts, interpreting error 

messages, and suggesting general debugging strategies 

[4]. The student controls the conversation, which is often 

associated with a high sense of autonomy, potentially 

leading to increased satisfaction. 

Platform-Integrated Systems (tutorBot+ Model): 

Integrating GenAI directly into the development or 

learning environment provides key advantages in terms 

of context grounding. By piping the student's exact code, 

the compiler output, and the test case results directly into 

the LLM's prompt, the system ensures the AI's response 

is highly relevant and avoids generic advice [27], [28]. 

Systems that debug code by verifying runtime execution 

step-by-step [41] demonstrate the power of deep platform 

integration. Our tutorBot+ tool follows this model by 

embedding GenAI into the existing flow of code 

submission and evaluation, prioritizing the provision of 

non-conversational, focused feedback. 

2.4. LLM Selection and Benchmarking 

The selection of the LLM for this study, GPT-4o-mini 

[21], was a strategic decision balancing performance, 

cost, and accessibility. While early GenAI research often 

focused on flagship models, the long-term sustainability 

of automated feedback for large student populations 

requires models that are both capable and economically 

viable. 

GPT-4o-mini is advertised as a model offering improved 

speed and intelligence at a fraction of the cost of its 

predecessors [21]. For code tasks, the primary 

requirement is strong logical reasoning and adherence to 

instructions, which is essential for accurate error 

diagnosis. General benchmarks for code models (e.g., 

[9], [36], [42]) demonstrate rapid improvements in the 

field. The use of a cost-efficient LLM allows this study 

to test the feasibility of deploying automated feedback at 

scale, which is crucial for real-world academic adoption. 

Furthermore, studies like LiveBench [35] emphasize the 

need for ongoing evaluation, justifying our effort to test 

a recent model iteration. 
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2.5. Ethical and Design Considerations for AI 

Feedback 

The introduction of powerful GenAI tools into education 

is not without its challenges. Chief among these are 

concerns related to plagiarism (students using the AI to 

solve problems rather than learn) and over-reliance [7], 

[19]. To mitigate these risks, the design of effective AI 

feedback must adhere to principles of responsible 

development [17], specifically by focusing on providing 

hints and explanations rather than complete solutions. 

The goal must be to promote learning, not to facilitate 

cheating. 

Furthermore, any deployed educational technology must 

be accessible. Future development must align with 

standards such as the W3C Authoring Tool Accessibility 

Guidelines (ATAG) to ensure the tools benefit all 

learners, avoiding the creation of new accessibility 

barriers [17]. Assessing the usability, as measured by the 

SUS [6], forms the initial step in ensuring a positive and 

accessible student experience. 

III. Methods 

3.1. Study Design and Participants 

This research utilized a quasi-experimental design 

conducted over a single academic semester within an 

introductory programming course at a university. A true 

randomized controlled trial was deemed impractical due 

to the ethical constraint of withholding a potentially 

beneficial learning resource from an entire group and the 

need to integrate the tools seamlessly into the existing 

curriculum structure. 

The study included 91 undergraduate computer science 

students enrolled in the required first-year programming 

course. The experimental group, which was granted 

access to the GenAI-powered feedback tools (tutorB@t 

and tutorBot+), consisted of 37 students. The control 

group (54 students) continued to receive feedback via the 

standard method: static unit tests from the code 

evaluation platform and delayed, instructor-provided 

feedback. 

3.2. AI Tool Development and Architecture 

Both tools utilized the same underlying GenAI model, 

GPT-4o-mini [21], accessed via a university API key. 

This minimized the variable of LLM capability, focusing 

the comparison on the interface and integration model. 

tutorB@t (Conversational Assistant) 

This tool was designed as a separate web-based chatbot 

assistant, simulating an interactive tutor. 

● Interaction: Students could paste their code or 

error messages and ask open-opened questions (e.g., 

"Why is my loop not stopping?"). 

● Prompt Engineering: The core prompt was 

engineered [39] to instruct the LLM to adopt the persona 

of a helpful but non-solution-giving programming tutor. 

It emphasized: 1) identifying the error, 2) explaining the 

concept behind the error, and 3) providing a structured 

hint or a guiding question instead of the corrected code 

[24]. This enforced a focus on metacognition. 

tutorBot+ (Platform-Integrated Tool) 

This tool was integrated directly into the university's 

custom programming evaluation platform, operating 

non-conversationally. 

● Interaction: When a student submitted code, the 

platform first ran it through a Judge0 instance (a virtual 

code evaluator). If the code failed any test case, the 

platform automatically sent a structured prompt to the 

LLM. 

● Prompt Grounding: The LLM's prompt was 

strictly "grounded" by providing the problem description, 

the student’s code, the failed test case input/output, and 

the exact error message from the compiler (if available). 

● Output: The LLM returned a concise, targeted 

feedback block that was displayed on the submission 

results page. This feedback was formatted as a single, 

actionable suggestion, prioritizing efficiency and speed 

over dialogue. 

3.3. Research Procedure 

1. Onboarding: All students in the experimental 

group received a mandatory session detailing the 

capabilities and appropriate ethical use of the AI tools. 

They were explicitly instructed that the tools were for 

learning assistance and debugging, not for problem-

solving. 

2. Intervention: For ten sequential weekly 

programming lab assignments, the experimental group 

had unrestricted access to both tutorB@t and tutorBot+ 

in addition to all traditional resources. The control group 

only had access to traditional resources. The assignments 

were standardized problem-based learning tasks [12] 

covering core introductory topics (e.g., loops, 

conditionals, functions). 

3. Data Collection: Usage logs (timestamp, number 

of interactions) were collected for the experimental 

group. Post-intervention, all participants completed a 

final assessment. Both groups completed a perception 

questionnaire regarding the learning environment. 

3.4. Data Collection Instruments 

Programming Performance 
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Objective performance was measured by two metrics: 

1. Test Case Success Rate: The average percentage 

of automated test cases passed across all ten assignments. 

2. Assignment Passing Rate: The percentage of 

assignments that met the required minimum passing 

threshold (e.g., 90% test case success). 

Usability and Perception 

The primary instrument for measuring user perception 

was the System Usability Scale (SUS) [6]. The SUS is a 

validated, 10-item scale providing a single score from 0 

to 100, which offers a quick, reliable measure of a tool’s 

perceived usability. This was administered to the 

experimental group for both tutorB@t and tutorBot+ 

separately. 

Intent to Reuse was assessed using two direct survey 

questions (e.g., "How likely are you to use this tool for 

future programming courses?"). 

3.5. Data Analysis 

Quantitative data (performance metrics, SUS scores) 

were analyzed using standard statistical methods in the 

social sciences. Specifically, an independent samples t-

test was used to compare the Test Case Success Rate and 

Assignment Passing Rate between the experimental and 

control groups. Descriptive statistics were used to report 

and interpret the SUS scores against industry 

benchmarks. Qualitative feedback was analyzed 

thematically to provide context for the quantitative 

results. 

IV. Results 

4.1. Student Programming Performance and Course 

Outcomes 

A comparison of the experimental group (AI-assisted) 

and the control group (traditional feedback) on the 

primary performance metrics yielded no statistically 

significant difference over the duration of the study. 

 

Metric Control Group (N=54) 

Mean (SD) 

Experimental Group 

(N=37) Mean (SD) 

p-value (t-test) 

Average Test Case 

Success Rate (%) 

78.4 (15.1) 79.9 (14.5) 
 

Assignment Passing 

Rate (%) 

68.5% 73.0% 
 

 

The experimental group demonstrated a marginally 

higher mean test case success rate and assignment 

passing rate, but this difference was not statistically 

significant. The study found no evidence that the 

integration of automated GenAI feedback, in its current 

form, is directly associated with a significant difference 

in objective programming performance or course 

outcomes. 

4.2. Tool Usability and Perceptions 

In stark contrast to the performance metrics, student 

perceptions of the tools were highly positive, confirming 

the first research question regarding usability and 

perceived utility. 

The System Usability Scale (SUS) results were as 

follows: 
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AI Tool SUS Score (0-100) Interpretation (Based on 

Industry Benchmarks) 

tutorB@t (Conversational 

Chatbot) 

70.6 Acceptable / Good 

tutorBot+ (Platform-

Integrated Feedback) 

65.2 Acceptable 

A score of 68 is generally considered the average 

benchmark for usability. Both tools achieved scores 

above or near this threshold, indicating that students 

found them relatively easy to use, intuitive, and non-

frustrating. The higher score for the conversational 

chatbot (tutorB@t) is associated with a perception that 

the interactive dialogue format may be slightly more 

user-friendly and engaging. 

4.3. Intent to Reuse 

The high usability translated directly into a strong intent 

to reuse both tools, suggesting students see value in 

having GenAI as a learning resource, even if the 

measured performance gains were minimal. 

● 81% of students in the experimental group 

reported they would be likely or very likely to use the 

conversational chatbot (tutorB@t) again in future 

programming courses. 

● 79% of students reported they would be likely or 

very likely to reuse the platform-integrated feedback 

(tutorBot+). 

4.4. Qualitative Insights on AI Feedback Value 

The thematic analysis of open-ended student comments 

provided critical context for the high perception scores. 

The value proposition of the GenAI tools consistently 

revolved around two themes: immediacy and 

accessibility. 

Students repeatedly highlighted the advantage of 

receiving feedback immediately upon submission, 

contrasting it favorably with the several-day delay often 

associated with human grading. This timely feedback 

allowed them to fix errors and progress with their 

learning while the problem was still cognitively salient, 

fulfilling a core pedagogical requirement [13], [27]. 

Furthermore, the 24/7 accessibility was cited as crucial 

for students who often worked outside standard office 

hours. The AI served as a reliable, always-available 

helper, particularly for debugging small, frustrating 

issues [1]. 

V. Discussion 

5.1. Interpretation of Core Findings 

The central, and perhaps most critical, finding of this 

study is the decoupling of positive student perception 

from measurable academic performance [32], [38]. 

Students found both the conversational (tutorB@t) and 

the integrated (tutorBot+) tools usable and valuable, 

achieving acceptable SUS scores of 70.6 and 65.2, 

respectively. Yet, the presence of these tools was not 

associated with a significant advantage in objective 

passing rates or test success compared to the control 

group. 

This suggests that GenAI, in its current implementation, 

successfully addresses the usability and motivational 

aspects (ARCS model's Confidence/Satisfaction [15]) of 

programming education by providing fast, accessible 

assistance. However, it may not yet fully address the 

deeper pedagogical challenge of forcing students to 

engage in productive struggle and genuinely learn from 

their mistakes. The AI's value appears to be primarily in 

its role as a supportive aid—a time-saver and frustration-

reducer—rather than a guaranteed driver of learning 

outcomes [31]. 

5.2. Analyzing the Performance Plateau: The 

Challenge of Productive Scaffolding and 

Metacognitive Load 

The most critical finding—the high user satisfaction 

coupled with non-significant academic performance 

gains—demands a deeper, theoretically grounded 

explanation beyond general factors like non-

homogeneity or external pressures. We propose that the 

plateau in performance is directly related to the difficulty 

of designing GenAI feedback that optimizes the student's 

productive struggle and minimizes extraneous cognitive 

load [33]. 
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As discussed in Section 2.1.3, deep learning from an error 

requires a student to engage in metacognitive regulation: 

monitoring the impasse, evaluating the failure, and 

revising the plan [29], [34]. Our GenAI tools, while 

highly capable, struggled to execute this pedagogical 

necessity perfectly, potentially leading to three 

metacognitive failure modes: 

5.2.1. Failure Mode 1: Bypassing the Impasse via 

Over-Scaffolding 

The core principle of managing the productive struggle is 

providing minimal intervention [33]. While our tools 

were explicitly engineered to avoid giving the final 

answer, the LLM’s natural language generation 

capabilities sometimes produced feedback that was too 

comprehensive. For example, when a student submitted 

code with a logic error in a loop condition, the AI might 

have correctly identified the required correction in terms 

of concept (e.g., "You need to iterate up to and including 

the length, not just up to the length") but failed to force 

the student to find the exact syntactic correction ( vs. ). 

In the conversational tutorB@t model, this was 

compounded by the student’s ability to "pester" the AI 

with follow-up questions until the hint became 

functionally equivalent to the solution. The student’s 

persistent questioning, while indicative of engagement 

(satisfying the ARCS model [15]), effectively allowed 

them to bypass the necessary intellectual challenge—the 

impasse—potentially leading to a fast solution without 

the corresponding metacognitive effort required for 

durable learning [34]. The high intent to reuse (81%) for 

this conversational tool is associated with students 

recognizing its potential for this efficient, albeit 

pedagogically suboptimal, shortcut. 

5.2.2. Failure Mode 2: Increased Extraneous 

Cognitive Load via Verbose Explanations 

In contrast to the over-scaffolding issue, the non-

conversational tutorBot+ tool, designed for maximum 

specificity by grounding its output in Judge0 test results, 

sometimes generated verbose and technically dense 

explanations. While the LLM’s ability to synthesize a 

detailed diagnosis from raw compiler output is 

technically impressive [1], the resultant paragraph could 

overwhelm a novice programmer, increasing their 

extraneous cognitive load [33]. 

Instead of focusing their cognitive resources on the 

germane load (the effort required for understanding the 

underlying concept), students had to expend significant 

resources simply trying to decode the AI’s complex, 

natural language explanation. This phenomenon may 

explain the slightly lower usability score for tutorBot+ 

(65.2) compared to the chatbot (70.6). The feedback was 

theoretically more correct and grounded, but its delivery 

hindered the student’s ability to move efficiently through 

the Evaluation and Revision phases of metacognitive 

regulation. The sheer volume of information, even when 

technically accurate, is sometimes considered 

counterproductive to the goal of efficient learning [24]. 

5.2.3. Failure Mode 3: Misalignment of Feedback 

Type and Metacognitive Phase 

The core design difference between the two tools may 

have led to an inherent misalignment with metacognitive 

needs: 

● tutorB@t (Conversational): Optimized for 

conceptual queries and Planning phases (Phase 1). 

Students could ask about strategy before writing code. 

However, its lack of direct access to run-time errors made 

it less effective for the Evaluation phase (Phase 3). 

Students had to manually paste errors, losing context. 

● tutorBot+ (Integrated): Optimized for the 

Evaluation and Revision phases (Phases 3 and 4) by 

providing immediate, grounded feedback on failed 

execution. However, it offered no opportunity for 

dialogue, making it less useful for students stuck in the 

Planning phase with a blank screen. 

The lack of performance gains suggests that students 

often used the tools at the wrong time or in a way that did 

not meet their immediate learning needs. For example, 

using the highly conceptual tutorB@t when the actual 

problem was a simple syntax error best diagnosed by 

tutorBot+'s test output, or vice versa. This misalignment 

may have resulted in wasted effort and frustration, 

neutralizing any potential performance benefit derived 

from the timeliness of the feedback [13]. 

5.3. Comparison with Existing Literature 

Our findings align with other GenAI studies that report 

high positive student sentiment [4], [10], [39]. The high 

intent to reuse (over 79% for both tools) confirms the 

acceptance of these technologies in the classroom. 

The comparison between the two tools is particularly 

illuminating. The higher usability score for the 

conversational tutorB@t (70.6) suggests that students 

inherently prefer the dialogic, flexible interface for their 

debugging needs. However, the slightly lower score for 

the platform-integrated tutorBot+ (65.2), which was 

designed to be highly specific and less conversational, 

suggests a trade-off: Specificity is often achieved at the 

expense of user experience. Future design work must 

reconcile the need for the targeted, grounded feedback of 

the platform tool with the perceived ease and friendliness 

of the conversational one [33]. 

5.4. Implications for Practice and Theory 

The findings highlight that simply providing access to 
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GenAI is a necessary, but insufficient, condition for 

improving learning outcomes. The integration must be 

pedagogically informed, particularly in how it manages 

the metacognitive process. 

5.4.1. Practical Implications: Designing for 

Metacognitive Engagement 

Practitioners utilizing GenAI for programming feedback 

must shift the focus from mere accuracy (which LLMs 

generally handle well [9]) to pedagogical efficacy—the 

ability to promote genuine learning. 

1. Iterative and Non-Verbal Scaffolding: Future 

tool design, especially for integrated systems like 

tutorBot+, should move toward multi-stage, iterative 

hints rather than a single large explanation. This could 

involve an initial non-verbal hint (e.g., highlighting the 

line of code [41]), followed by a conceptual hint, and only 

then a detailed explanation. This design forces the student 

to re-engage with the problem before escalating the level 

of help, thereby enforcing the productive struggle. 

2. Contextual Feedback for Planning: For 

conversational tools like tutorB@t, the prompt 

engineering must be refined to be highly demanding of 

the student's existing plan before offering guidance. For 

instance, the AI should refuse to proceed until the student 

articulates their intended algorithm or current failure 

hypothesis, directly targeting the Monitoring phase [29]. 

3. Mandatory Reflection: Implementing a 

mandatory reflective step before allowing students to 

copy code from the platform, as suggested by literature 

on self-regulated learning. For example, a pop-up 

requiring the student to type "I have identified the error 

as X, and my plan is to try Y" before revealing the AI's 

hint. This ensures the student engages in explicit 

metacognitive revision [26]. 

5.4.2. Theoretical Implications: Moving Beyond 

Performance Metrics 

The high perception scores (SUS 70.6 and 65.2) and the 

high intent to reuse (over 79%) suggest that the GenAI 

tools are highly effective at addressing the affective 

domain of learning, even if their impact on the cognitive 

domain (performance) is minimal in a short-term study. 

This requires a theoretical pivot in the evaluation of 

educational AI. We must formally incorporate 

motivational models, such as the ARCS framework [15], 

and self-efficacy instruments [38] into future 

methodologies. If GenAI reduces frustration, increases 

persistence, and boosts a student's confidence in their 

ability to debug—all factors associated with timely and 

personalized feedback—then it is profoundly valuable, 

even without an immediate lift in test scores. This value 

is captured not by traditional performance metrics, but by 

measuring engagement, persistence, and self-regulation 

over a longer duration [31]. Future studies, as detailed in 

Section 5.6, must therefore prioritize the collection of 

these affective and motivational data points. 

5.5. Study Limitations 

Acknowledging the limitations is crucial for interpreting 

these results. Key limitations include: 

● The quasi-experimental design hinders definitive 

causal inference due to potential pre-existing differences 

between the groups. 

● The duration of the study (one semester) may 

have been too short for students to fully adapt their 

learning behaviors to the new resources. 

● The reliance on a single LLM (GPT-4o-mini) 

limits generalizability across the rapidly evolving GenAI 

landscape. 

5.6. Future Work 

To capitalize on the high user acceptance and resolve the 

performance ambiguity, future research will concentrate 

on three strategic pillars, focusing heavily on 

metacognitive scaffolding and affective impact. 

5.6.1. Integrating Affective and Motivational 

Measures 

To fully capture the value demonstrated by the high 

perception and reuse rates, future iterations of this study 

will incorporate validated psychometric instruments 

alongside performance tracking [38]. 

Specifically, we will integrate the Instructional Materials 

Motivation Survey (IMMS) [8] to systematically assess 

the motivational impact of the AI tools. The IMMS is 

designed around the four components of the ARCS 

model [15]: 

● Attention: Does the novelty and interactivity of 

the AI hold the student's interest? 

● Relevance: Does the AI connect the problem to 

the student's long-term goals? 

● Confidence: Does the AI help the student feel 

successful and capable? 

● Satisfaction: Does the student feel rewarded and 

pleased with the learning outcome? 

This quantitative affective data will be triangulated with 

semi-structured interviews and think-aloud protocols 

during debugging sessions. The goal is to move beyond 

the subjective "I liked it" to the measurable "It increased 

my persistence when facing an impasse," providing the 
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necessary evidence to support the theoretical value of 

GenAI as an engagement and confidence builder [38]. 

5.6.2. Refined Scaffolding and Accessibility Design 

Future development will focus on integrating the best 

features of both tools while optimizing for the productive 

struggle: 

1. The Hybrid Interface: We will develop a single, 

hybrid interface that presents the grounded, Judge0-based 

feedback of tutorBot+ as a default, non-verbal 

notification. The student can then click an "Explain/Chat" 

button to initiate the tutorB@t conversational dialogue, 

ensuring that conceptual support is always secondary to 

the execution-grounded diagnosis. 

2. Explicit Metacognitive Prompts: Prompt 

engineering for GPT-4o-mini will be revised to include 

explicit instructions for the AI to address the student's 

Planning and Monitoring phases directly. For instance, 

the prompt will instruct the AI to phrase its feedback as a 

question that forces the student to analyze their 

assumption rather than their code line (e.g., "Review your 

initial plan. Are you sure you accounted for the edge case 

where the input list is empty?"). 

3. W3C ATAG Compliance: Accessibility is a 

pedagogical imperative [17]. Future versions will 

undergo a thorough accessibility audit, focusing 

specifically on W3C ATAG compliance, ensuring that 

keyboard navigation, screen reader compatibility, and 

clear text contrast are integrated into the final design, 

guaranteeing equitable access to this powerful feedback 

mechanism. 

5.6.3. Longitudinal Study and Scaffolding 

Adjustment 

A long-term, multi-cohort study is planned to overcome 

the limitation of the single-semester intervention. This 

study will track student performance across multiple 

courses and systematically compare three groups: 

1. Control: Traditional static feedback. 

2. Minimal Scaffolding: AI provides only error 

location and an abstract hint. 

3. Optimal Scaffolding: AI dynamically adjusts 

hint specificity based on the student's submission history 

and time spent at the impasse. 

This longitudinal approach will allow researchers to 

observe whether the cumulative effect of timely, high-

quality feedback eventually is associated with the 

development of superior long-term metacognitive skills 

and sustained performance gains in subsequent, 

unassisted assignments. 

VI. Conclusion 

The integration of Generative AI, specifically GPT-4o-

mini, into undergraduate programming education 

through a conversational chatbot (tutorB@t) and a 

platform-embedded tool (tutorBot+) is associated with a 

significant step forward in addressing the challenge of 

timely and scalable feedback. Students overwhelmingly 

found both tools useful and easy to use, reflected in 

acceptable SUS scores and high intent to reuse. This 

confirms the critical value of AI as an accessible, always-

available support system for novice programmers. 

However, the lack of a statistically significant difference 

in objective performance metrics underscores a key 

finding: High utility does not guarantee high academic 

impact. This plateau is likely attributable to complex 

pedagogical and confounding factors, including student 

behaviors driven by academic pressure and the intrinsic 

difficulty of interpreting and applying automated 

feedback effectively, particularly concerning the 

necessary metacognitive regulation. 

Ultimately, the power of GenAI lies not in replacing the 

human instruction model, but in providing a reliable, 

personalized lifeline to students whenever they are stuck. 

Future efforts in this domain must focus intently on 

pedagogical design—ensuring the AI promotes 

productive struggle, measuring its impact on motivation 

and self-efficacy, and iteratively refining the interface to 

blend specificity with usability. It is through this 

balanced approach that we can transition GenAI from a 

helpful novelty to a true enhancer of learning outcomes. 
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