
INTERNATIONAL RESEARCH JOURNAL OF ADVANCED

ENGINEERING AND TECHNOLOGY (IRJAET)

https://aimjournals.com/index.php/irjaet

pg. 91

eISSN: 3087-4068

Volume. 02, Issue. 10, pp. 91-101, October 2025"

EVALUATING CONVERSATIONAL AND PLATFORM-INTEGRATED

GENERATIVE AI FOR AUTOMATED, TIMELY FEEDBACK IN

PROGRAMMING EDUCATION: A QUASI-EXPERIMENTAL STUDY

UTILIZING GPT-4O-MINI

Prof. Kenji A. Takada

Faculty of Computer Science and Engineering, Meiji University of Technology, Tokyo, Japan

Article received: 14/08/2025, Article Revised: 21/09/2025, Article Published: 31/10/2025

© 2025 Authors retain the copyright of their manuscripts, and all Open Access articles are disseminated under the

terms of the Creative Commons Attribution License 4.0 (CC-BY), which licenses unrestricted use, distribution, and

reproduction in any medium, provided that the original work is appropriately cited.

ABSTRACT

Context: Effective feedback is critical for novice programmers, but providing it in a timely and scalable manner poses

a significant challenge in higher education [13], [14], [37]. Generative Artificial Intelligence (GenAI), particularly

Large Language Models (LLMs) trained on code [9], [36], offers a promising avenue to automate this process [1],

[22].

Objectives: This quasi-experimental study aimed to evaluate the usability, student perceptions, and academic impact

of two distinct GenAI-assisted feedback tools, both powered by GPT-4o-mini: a conversational assistant (tutorB@t)

and a platform-embedded tool integrated with a virtual code evaluator (tutorBot+).

Methods: The study involved 91 undergraduate computer science students, with 37 assigned to the experimental AI-

assisted group. We measured student programming performance, passing rates, and user perception using the System

Usability Scale (SUS) [6] to assess the perceived utility and ease of use of the developed tools.

Results: Students highly valued the immediacy and accessibility of the AI feedback. Perception scores were positive,

with tutorB@t achieving a SUS score of 70.6 and tutorBot+ scoring 65.2, and a high intent to reuse (81% and 79%,

respectively). Crucially, despite positive perceptions, the study found no statistically significant difference in

objective programming performance or passing rates between the groups. This outcome is attributed primarily to

factors such as a lack of group homogeneity, external academic pressures, and occasional student misunderstanding

of the GenAI-provided feedback.

Conclusion: Timely, automated feedback from GenAI is highly valued by students for its accessibility. Yet, the

current study suggests that design limitations (usability, student misunderstandings, external factors) may mask the

direct academic impact, highlighting a need for refined integration and future research incorporating affective

measures [15], [38] to fully understand and unlock the pedagogical potential of LLM-based feedback [33].

KEYWORDS

Programming Education, Generative AI, GPT-4o-mini, Automated Feedback, Timely Feedback, Quasi-Experimental

Study, Usability.

INTRODUCTION

1.1. Background: The Critical Role of Feedback in

Programming Education

Learning to code is fundamentally a recursive process

that relies heavily on iterative practice, failure, and

correction. For novice programmers, the journey from a

conceptual understanding of an algorithm to a successful,

working implementation is fraught with common pitfalls,

logical errors, and syntax struggles. In this context,

feedback is not merely a mechanism for grading; it is the

essential catalyst for learning, development, and eventual

mastery [13].

Effective feedback must possess three crucial qualities: it

needs to be timely, arriving when the student is still

focused on the problem; it must be targeted, addressing

the specific misconception or error; and it needs to be

https://aimjournals.com/index.php/irjaet

INTERNATIONAL RESEARCH JOURNAL OF ADVANCED

ENGINEERING AND TECHNOLOGY (IRJAET)

https://aimjournals.com/index.php/irjaet

pg. 92

actionable, providing guidance on how to improve rather

than just what is wrong [13], [25]. When feedback is

delayed, students often move on to other tasks, and the

cognitive link between the error and the correction is

weakened, severely diminishing its pedagogical power

[2]. Conversely, when feedback is prompt and high-

quality, it is associated with significantly enhanced

student learning outcomes and self-efficacy [37], [14].

However, the reality of programming education in

modern higher education settings—characterized by

large class sizes and resource constraints—means that

providing this level of personalized, high-quality, and

timely feedback consistently is a massive logistical

challenge [14]. Human instructors struggle to keep up

with the volume of code submissions, leading to

significant delays in grading and personalized guidance.

This systemic delay creates a critical educational

bottleneck, prompting the search for automated solutions.

1.2. The Emergence of Generative AI (GenAI) in

Education

The advent of sophisticated Generative Artificial

Intelligence (GenAI), particularly Large Language

Models (LLMs), has offered a compelling and potentially

transformative solution to this scaling problem [40], [18].

LLMs like those developed by OpenAI have

demonstrated a remarkable ability to understand,

generate, and, critically for this domain, reason about

code [9], [36]. Evaluations suggest these models can

successfully pass technical interviews, generate novel

code snippets, and even fix complex bugs [36].

This capacity represents a significant step beyond earlier

automated educational tools, such as basic error checkers

or rule-based Intelligent Tutoring Systems (ITS) [16],

[30]. Whereas prior systems relied on pre-defined

knowledge bases and structured rules, GenAI offers the

flexibility to synthesize human-like, natural language

explanations and corrections tailored to a student's unique

code submission and context [5]. This allows LLMs to

function not just as evaluators but as genuine virtual

tutors [4], capable of engaging in dialogue and offering

nuanced, context-sensitive support.

1.3. LLMs as Automated Feedback Tools

The application of LLMs to generate feedback for

programming assignments has recently become a prolific

area of research [1]. Studies have explored their efficacy

in automating the grading process [22], creating high-

quality hints [24], and serving as conversational

assistants [10], [11].

These approaches generally fall into two categories,

which inform the design of the tools investigated here:

1. Conversational Chatbots: Tools like tutorB@t

operate as standalone assistants, allowing students to

paste code or ask general questions. They prioritize

interactive dialogue and context-based guidance [4],

[39].

2. Platform-Integrated Systems: Tools like

tutorBot+ embed the GenAI directly into the learning

management or programming environment. They

typically ingest compiler errors or test results from an

evaluator (like Judge0) and use this specific data to

generate highly targeted feedback [27], [28].

Recent advancements have made LLMs more accessible.

The introduction of models like GPT-4o-mini [21]

provides a high-performing, yet cost-efficient, option.

This model boasts significant reasoning capabilities

compared to earlier generations while drastically

reducing the computational cost per interaction. This

makes the implementation of high-volume, real-time

feedback systems pedagogically and economically

feasible for large university programs.

1.4. Identifying the Research Gap

While the promise of GenAI in Computer Science

education is clear, two critical gaps persist in the current

literature:

First, there is a distinct lack of comparative studies that

simultaneously evaluate the efficacy of different LLM

deployment mechanisms—specifically, a conversational

chatbot versus a platform-embedded, non-conversational

tool—within a single controlled educational context.

Understanding how the interface design is associated

with student interaction, perception, and learning

outcomes is crucial for practitioners and tool developers

[19].

Second, despite overwhelming evidence that students

enjoy using GenAI tools and find them helpful [32], there

remains a persistent uncertainty regarding whether this

high satisfaction consistently predicts measurable,

objective gains in academic performance. Many studies

focus on subjective usability or qualitative engagement,

leaving the core question of academic impact

unanswered.

This study directly addresses these gaps by implementing

and testing two distinct feedback tools—tutorB@t and

tutorBot+—both powered by the cost-effective yet

powerful GPT-4o-mini [21], within a quasi-experimental

setting.

1.5. Research Questions and Study Overview

This research sought to answer the following questions,

using language appropriate for a correlational study:

1. Is the perceived usability of both conversational

https://aimjournals.com/index.php/irjaet

INTERNATIONAL RESEARCH JOURNAL OF ADVANCED

ENGINEERING AND TECHNOLOGY (IRJAET)

https://aimjournals.com/index.php/irjaet

pg. 93

and platform-integrated GenAI feedback tools (tutorB@t

and tutorBot+) acceptable to students, as measured by

standardized usability metrics?

2. Is the provision of automated, timely GenAI

feedback, regardless of deployment method, associated

with a statistically significant difference in student

programming performance (e.g., passing rates or test

success) compared to traditional methods?

The remainder of this article details the pedagogical

foundations underpinning effective feedback, the

architectural design of the two tools, the methodology of

the quasi-experimental study, the quantitative and

qualitative results, and a robust discussion of the

implications of the findings.

II. Related Work

2.1. Pedagogical Foundations of Effective

Programming Feedback

The philosophical foundation of our tool design rests on

established principles of educational psychology and

feedback theory. Hattie and Timperley [13] emphasized

that effective feedback must answer four key questions:

Where am I going? (goals), How am I going? (progress),

Where to next? (directions), and critically, How can I

close the gap? (actionable steps). GenAI is uniquely

positioned to help students close the gap by providing

highly specific, what-to-do-next advice directly related to

their current code [33].

Furthermore, deep learning requires students to develop

metacognition—the ability to monitor and regulate one's

own thinking and learning processes [29], [26]. In

programming, this involves debugging skills, self-

checking assumptions, and planning solutions. AI-driven

feedback, unlike simple pass/fail tests, can foster

metacognition by asking guiding questions or providing

hints that nudge the student toward the solution without

simply giving it away.

Finally, we consider motivational design [15]. John

Keller's ARCS Model (Attention, Relevance,

Confidence, Satisfaction) suggests that technology must

maintain a student's engagement to be effective [15].

Timely, personalized, and constructive feedback

delivered by the AI addresses the "Confidence" and

"Satisfaction" components by reducing the time spent

blocked on trivial errors and providing a sense of

personalized support, which can be highly motivating

[38].

2.1.3. Feedback and the Cultivation of Metacognition:

The Productive Struggle

The process of debugging and problem-solving in

programming is fundamentally a metacognitive exercise.

Metacognition—often defined as 'thinking about

thinking'—encompasses a set of cognitive skills vital for

self-regulated learning and error recovery [29]. Schraw

and Dennison defined metacognitive awareness along

two dimensions: knowledge of cognition (what a learner

knows about their own cognitive resources and

strategies) and regulation of cognition (how a learner

monitors and controls their learning processes) [29].

Effective feedback in programming must therefore target

not just the solution, but the student's process of reaching

that solution, promoting regulation of cognition through

four distinct phases:

1. Planning: Setting goals and selecting appropriate

strategies (e.g., choosing a loop structure).

2. Monitoring: Tracking progress, comparing

current state to goals, and identifying obstacles (e.g.,

recognizing that a program is stuck in an infinite loop).

3. Evaluation: Assessing the outcome of a strategy

and determining if the final solution is correct and

efficient (e.g., running the program and analyzing the

output).

4. Revision: Adjusting the plan and strategies based

on the evaluation (i.e., debugging).

Failure to achieve a solution often results in an impasse,

which VanLehn argued is the critical precursor to

learning [34]. An impasse-driven learning model

suggests that the most profound learning occurs when a

student recognizes that their current knowledge or

strategy is insufficient, forcing them to engage in self-

repair and knowledge revision.

The critical challenge for automated feedback systems,

including GenAI, is to interrupt this impasse in a

productive way. This is known as managing the

Productive Struggle—providing just enough information

to keep the student motivated (preventing abandonment)

while withholding the complete solution to ensure they

perform the necessary cognitive work (preventing over-

reliance) [33].

Traditional ITS systems managed this productive

struggle via carefully curated hint sequences, often

relying on structured rule sets or cognitive models [34].

In contrast, GenAI systems generate hints and

explanations dynamically using natural language. This

flexibility presents both a strength and a weakness:

● Strength: GenAI can generate a wider variety of

responses and adapt the tone, aligning with the "human

tutor-style" feedback advocated by some researchers

[24], [33].

● Weakness: The LLM's output is not inherently

https://aimjournals.com/index.php/irjaet

INTERNATIONAL RESEARCH JOURNAL OF ADVANCED

ENGINEERING AND TECHNOLOGY (IRJAET)

https://aimjournals.com/index.php/irjaet

pg. 94

optimized for metacognitive scaffolding. Without

stringent prompt engineering, the feedback may become

too verbose, increasing the student's extraneous cognitive

load (information processing unrelated to learning the

core concept) [33]. Alternatively, the LLM may

inadvertently provide information that bypasses the

productive struggle entirely, potentially leading to a

quick fix but no deep learning [7].

Therefore, the efficacy of our two tools—the

conversational tutorB@t and the integrated tutorBot+—

must be analyzed through the lens of which phase of

metacognitive regulation they most effectively support

and whether their interface design inherently manages the

productive struggle. The conversational approach

(tutorB@t) is often associated with supporting the

Planning and Monitoring phases by allowing students to

articulate their thought process and receive general

conceptual guidance. Conversely, the integrated

approach (tutorBot+) is primarily driven by compiler

errors and test case failure, making it highly suitable for

supporting the Evaluation and Revision phases, as its

feedback is explicitly grounded in the execution

outcome.

The tension between these two models—flexibility and

conceptual guidance (tutorB@t) versus rigid, execution-

grounded diagnosis (tutorBot+)—is central to

understanding why high usability did not translate to

performance gains in this study. If the AI is used to avoid

the necessary productive struggle, then improved

performance remains elusive, regardless of how friendly

or accessible the tool is.

2.2. Automated Feedback Systems and Intelligent

Tutoring Systems (ITS)

The concept of using technology to automate instruction

and feedback has a long history, dating back to early

Intelligent Tutoring Systems (ITS) [30]. These systems,

built on cognitive models and production rules, aimed to

provide individualized instruction and detailed error

diagnosis [34]. Classic examples include systems that

tracked student attempts and provided targeted hints

based on pre-defined knowledge rules [16].

However, traditional ITS often suffered from a

knowledge acquisition bottleneck—building and

maintaining the domain knowledge base necessary to

cover all possible student errors was incredibly labor-

intensive and challenging to scale across new problems

or programming languages.

GenAI fundamentally alters this landscape. Rather than

relying on explicit programming of error models, LLMs

leverage vast training data to infer common errors and

generate novel, human-like diagnostic explanations [5].

This flexibility positions LLMs as "domain-general"

tutors that can adapt instantly to new problems, thereby

solving the scale and maintenance issues that plagued

previous automated systems [33]. Studies suggest LLMs

can successfully automate feedback and even generate

hints styled after human tutors [24].

2.3. GenAI Implementation in Computer Science

Education

Current research highlights a bifurcation in how LLMs

are applied to programming instruction:

Conversational Interfaces (tutorB@t Model): Tools

implemented as chatbots (e.g., ChatGPT, or course-

specific bots [10], [11]) are highly praised for their low

barrier to entry and their ability to sustain a human-like

dialogue [39]. They excel at providing immediate,

flexible clarification on concepts, interpreting error

messages, and suggesting general debugging strategies

[4]. The student controls the conversation, which is often

associated with a high sense of autonomy, potentially

leading to increased satisfaction.

Platform-Integrated Systems (tutorBot+ Model):

Integrating GenAI directly into the development or

learning environment provides key advantages in terms

of context grounding. By piping the student's exact code,

the compiler output, and the test case results directly into

the LLM's prompt, the system ensures the AI's response

is highly relevant and avoids generic advice [27], [28].

Systems that debug code by verifying runtime execution

step-by-step [41] demonstrate the power of deep platform

integration. Our tutorBot+ tool follows this model by

embedding GenAI into the existing flow of code

submission and evaluation, prioritizing the provision of

non-conversational, focused feedback.

2.4. LLM Selection and Benchmarking

The selection of the LLM for this study, GPT-4o-mini

[21], was a strategic decision balancing performance,

cost, and accessibility. While early GenAI research often

focused on flagship models, the long-term sustainability

of automated feedback for large student populations

requires models that are both capable and economically

viable.

GPT-4o-mini is advertised as a model offering improved

speed and intelligence at a fraction of the cost of its

predecessors [21]. For code tasks, the primary

requirement is strong logical reasoning and adherence to

instructions, which is essential for accurate error

diagnosis. General benchmarks for code models (e.g.,

[9], [36], [42]) demonstrate rapid improvements in the

field. The use of a cost-efficient LLM allows this study

to test the feasibility of deploying automated feedback at

scale, which is crucial for real-world academic adoption.

Furthermore, studies like LiveBench [35] emphasize the

need for ongoing evaluation, justifying our effort to test

a recent model iteration.

https://aimjournals.com/index.php/irjaet

INTERNATIONAL RESEARCH JOURNAL OF ADVANCED

ENGINEERING AND TECHNOLOGY (IRJAET)

https://aimjournals.com/index.php/irjaet

pg. 95

2.5. Ethical and Design Considerations for AI

Feedback

The introduction of powerful GenAI tools into education

is not without its challenges. Chief among these are

concerns related to plagiarism (students using the AI to

solve problems rather than learn) and over-reliance [7],

[19]. To mitigate these risks, the design of effective AI

feedback must adhere to principles of responsible

development [17], specifically by focusing on providing

hints and explanations rather than complete solutions.

The goal must be to promote learning, not to facilitate

cheating.

Furthermore, any deployed educational technology must

be accessible. Future development must align with

standards such as the W3C Authoring Tool Accessibility

Guidelines (ATAG) to ensure the tools benefit all

learners, avoiding the creation of new accessibility

barriers [17]. Assessing the usability, as measured by the

SUS [6], forms the initial step in ensuring a positive and

accessible student experience.

III. Methods

3.1. Study Design and Participants

This research utilized a quasi-experimental design

conducted over a single academic semester within an

introductory programming course at a university. A true

randomized controlled trial was deemed impractical due

to the ethical constraint of withholding a potentially

beneficial learning resource from an entire group and the

need to integrate the tools seamlessly into the existing

curriculum structure.

The study included 91 undergraduate computer science

students enrolled in the required first-year programming

course. The experimental group, which was granted

access to the GenAI-powered feedback tools (tutorB@t

and tutorBot+), consisted of 37 students. The control

group (54 students) continued to receive feedback via the

standard method: static unit tests from the code

evaluation platform and delayed, instructor-provided

feedback.

3.2. AI Tool Development and Architecture

Both tools utilized the same underlying GenAI model,

GPT-4o-mini [21], accessed via a university API key.

This minimized the variable of LLM capability, focusing

the comparison on the interface and integration model.

tutorB@t (Conversational Assistant)

This tool was designed as a separate web-based chatbot

assistant, simulating an interactive tutor.

● Interaction: Students could paste their code or

error messages and ask open-opened questions (e.g.,

"Why is my loop not stopping?").

● Prompt Engineering: The core prompt was

engineered [39] to instruct the LLM to adopt the persona

of a helpful but non-solution-giving programming tutor.

It emphasized: 1) identifying the error, 2) explaining the

concept behind the error, and 3) providing a structured

hint or a guiding question instead of the corrected code

[24]. This enforced a focus on metacognition.

tutorBot+ (Platform-Integrated Tool)

This tool was integrated directly into the university's

custom programming evaluation platform, operating

non-conversationally.

● Interaction: When a student submitted code, the

platform first ran it through a Judge0 instance (a virtual

code evaluator). If the code failed any test case, the

platform automatically sent a structured prompt to the

LLM.

● Prompt Grounding: The LLM's prompt was

strictly "grounded" by providing the problem description,

the student’s code, the failed test case input/output, and

the exact error message from the compiler (if available).

● Output: The LLM returned a concise, targeted

feedback block that was displayed on the submission

results page. This feedback was formatted as a single,

actionable suggestion, prioritizing efficiency and speed

over dialogue.

3.3. Research Procedure

1. Onboarding: All students in the experimental

group received a mandatory session detailing the

capabilities and appropriate ethical use of the AI tools.

They were explicitly instructed that the tools were for

learning assistance and debugging, not for problem-

solving.

2. Intervention: For ten sequential weekly

programming lab assignments, the experimental group

had unrestricted access to both tutorB@t and tutorBot+

in addition to all traditional resources. The control group

only had access to traditional resources. The assignments

were standardized problem-based learning tasks [12]

covering core introductory topics (e.g., loops,

conditionals, functions).

3. Data Collection: Usage logs (timestamp, number

of interactions) were collected for the experimental

group. Post-intervention, all participants completed a

final assessment. Both groups completed a perception

questionnaire regarding the learning environment.

3.4. Data Collection Instruments

Programming Performance

https://aimjournals.com/index.php/irjaet

INTERNATIONAL RESEARCH JOURNAL OF ADVANCED

ENGINEERING AND TECHNOLOGY (IRJAET)

https://aimjournals.com/index.php/irjaet

pg. 96

Objective performance was measured by two metrics:

1. Test Case Success Rate: The average percentage

of automated test cases passed across all ten assignments.

2. Assignment Passing Rate: The percentage of

assignments that met the required minimum passing

threshold (e.g., 90% test case success).

Usability and Perception

The primary instrument for measuring user perception

was the System Usability Scale (SUS) [6]. The SUS is a

validated, 10-item scale providing a single score from 0

to 100, which offers a quick, reliable measure of a tool’s

perceived usability. This was administered to the

experimental group for both tutorB@t and tutorBot+

separately.

Intent to Reuse was assessed using two direct survey

questions (e.g., "How likely are you to use this tool for

future programming courses?").

3.5. Data Analysis

Quantitative data (performance metrics, SUS scores)

were analyzed using standard statistical methods in the

social sciences. Specifically, an independent samples t-

test was used to compare the Test Case Success Rate and

Assignment Passing Rate between the experimental and

control groups. Descriptive statistics were used to report

and interpret the SUS scores against industry

benchmarks. Qualitative feedback was analyzed

thematically to provide context for the quantitative

results.

IV. Results

4.1. Student Programming Performance and Course

Outcomes

A comparison of the experimental group (AI-assisted)

and the control group (traditional feedback) on the

primary performance metrics yielded no statistically

significant difference over the duration of the study.

Metric Control Group (N=54)

Mean (SD)

Experimental Group

(N=37) Mean (SD)

p-value (t-test)

Average Test Case

Success Rate (%)

78.4 (15.1) 79.9 (14.5)

Assignment Passing

Rate (%)

68.5% 73.0%

The experimental group demonstrated a marginally

higher mean test case success rate and assignment

passing rate, but this difference was not statistically

significant. The study found no evidence that the

integration of automated GenAI feedback, in its current

form, is directly associated with a significant difference

in objective programming performance or course

outcomes.

4.2. Tool Usability and Perceptions

In stark contrast to the performance metrics, student

perceptions of the tools were highly positive, confirming

the first research question regarding usability and

perceived utility.

The System Usability Scale (SUS) results were as

follows:

https://aimjournals.com/index.php/irjaet

INTERNATIONAL RESEARCH JOURNAL OF ADVANCED

ENGINEERING AND TECHNOLOGY (IRJAET)

https://aimjournals.com/index.php/irjaet

pg. 97

AI Tool SUS Score (0-100) Interpretation (Based on

Industry Benchmarks)

tutorB@t (Conversational

Chatbot)

70.6 Acceptable / Good

tutorBot+ (Platform-

Integrated Feedback)

65.2 Acceptable

A score of 68 is generally considered the average

benchmark for usability. Both tools achieved scores

above or near this threshold, indicating that students

found them relatively easy to use, intuitive, and non-

frustrating. The higher score for the conversational

chatbot (tutorB@t) is associated with a perception that

the interactive dialogue format may be slightly more

user-friendly and engaging.

4.3. Intent to Reuse

The high usability translated directly into a strong intent

to reuse both tools, suggesting students see value in

having GenAI as a learning resource, even if the

measured performance gains were minimal.

● 81% of students in the experimental group

reported they would be likely or very likely to use the

conversational chatbot (tutorB@t) again in future

programming courses.

● 79% of students reported they would be likely or

very likely to reuse the platform-integrated feedback

(tutorBot+).

4.4. Qualitative Insights on AI Feedback Value

The thematic analysis of open-ended student comments

provided critical context for the high perception scores.

The value proposition of the GenAI tools consistently

revolved around two themes: immediacy and

accessibility.

Students repeatedly highlighted the advantage of

receiving feedback immediately upon submission,

contrasting it favorably with the several-day delay often

associated with human grading. This timely feedback

allowed them to fix errors and progress with their

learning while the problem was still cognitively salient,

fulfilling a core pedagogical requirement [13], [27].

Furthermore, the 24/7 accessibility was cited as crucial

for students who often worked outside standard office

hours. The AI served as a reliable, always-available

helper, particularly for debugging small, frustrating

issues [1].

V. Discussion

5.1. Interpretation of Core Findings

The central, and perhaps most critical, finding of this

study is the decoupling of positive student perception

from measurable academic performance [32], [38].

Students found both the conversational (tutorB@t) and

the integrated (tutorBot+) tools usable and valuable,

achieving acceptable SUS scores of 70.6 and 65.2,

respectively. Yet, the presence of these tools was not

associated with a significant advantage in objective

passing rates or test success compared to the control

group.

This suggests that GenAI, in its current implementation,

successfully addresses the usability and motivational

aspects (ARCS model's Confidence/Satisfaction [15]) of

programming education by providing fast, accessible

assistance. However, it may not yet fully address the

deeper pedagogical challenge of forcing students to

engage in productive struggle and genuinely learn from

their mistakes. The AI's value appears to be primarily in

its role as a supportive aid—a time-saver and frustration-

reducer—rather than a guaranteed driver of learning

outcomes [31].

5.2. Analyzing the Performance Plateau: The

Challenge of Productive Scaffolding and

Metacognitive Load

The most critical finding—the high user satisfaction

coupled with non-significant academic performance

gains—demands a deeper, theoretically grounded

explanation beyond general factors like non-

homogeneity or external pressures. We propose that the

plateau in performance is directly related to the difficulty

of designing GenAI feedback that optimizes the student's

productive struggle and minimizes extraneous cognitive

load [33].

https://aimjournals.com/index.php/irjaet

INTERNATIONAL RESEARCH JOURNAL OF ADVANCED

ENGINEERING AND TECHNOLOGY (IRJAET)

https://aimjournals.com/index.php/irjaet

pg. 98

As discussed in Section 2.1.3, deep learning from an error

requires a student to engage in metacognitive regulation:

monitoring the impasse, evaluating the failure, and

revising the plan [29], [34]. Our GenAI tools, while

highly capable, struggled to execute this pedagogical

necessity perfectly, potentially leading to three

metacognitive failure modes:

5.2.1. Failure Mode 1: Bypassing the Impasse via

Over-Scaffolding

The core principle of managing the productive struggle is

providing minimal intervention [33]. While our tools

were explicitly engineered to avoid giving the final

answer, the LLM’s natural language generation

capabilities sometimes produced feedback that was too

comprehensive. For example, when a student submitted

code with a logic error in a loop condition, the AI might

have correctly identified the required correction in terms

of concept (e.g., "You need to iterate up to and including

the length, not just up to the length") but failed to force

the student to find the exact syntactic correction (vs.).

In the conversational tutorB@t model, this was

compounded by the student’s ability to "pester" the AI

with follow-up questions until the hint became

functionally equivalent to the solution. The student’s

persistent questioning, while indicative of engagement

(satisfying the ARCS model [15]), effectively allowed

them to bypass the necessary intellectual challenge—the

impasse—potentially leading to a fast solution without

the corresponding metacognitive effort required for

durable learning [34]. The high intent to reuse (81%) for

this conversational tool is associated with students

recognizing its potential for this efficient, albeit

pedagogically suboptimal, shortcut.

5.2.2. Failure Mode 2: Increased Extraneous

Cognitive Load via Verbose Explanations

In contrast to the over-scaffolding issue, the non-

conversational tutorBot+ tool, designed for maximum

specificity by grounding its output in Judge0 test results,

sometimes generated verbose and technically dense

explanations. While the LLM’s ability to synthesize a

detailed diagnosis from raw compiler output is

technically impressive [1], the resultant paragraph could

overwhelm a novice programmer, increasing their

extraneous cognitive load [33].

Instead of focusing their cognitive resources on the

germane load (the effort required for understanding the

underlying concept), students had to expend significant

resources simply trying to decode the AI’s complex,

natural language explanation. This phenomenon may

explain the slightly lower usability score for tutorBot+

(65.2) compared to the chatbot (70.6). The feedback was

theoretically more correct and grounded, but its delivery

hindered the student’s ability to move efficiently through

the Evaluation and Revision phases of metacognitive

regulation. The sheer volume of information, even when

technically accurate, is sometimes considered

counterproductive to the goal of efficient learning [24].

5.2.3. Failure Mode 3: Misalignment of Feedback

Type and Metacognitive Phase

The core design difference between the two tools may

have led to an inherent misalignment with metacognitive

needs:

● tutorB@t (Conversational): Optimized for

conceptual queries and Planning phases (Phase 1).

Students could ask about strategy before writing code.

However, its lack of direct access to run-time errors made

it less effective for the Evaluation phase (Phase 3).

Students had to manually paste errors, losing context.

● tutorBot+ (Integrated): Optimized for the

Evaluation and Revision phases (Phases 3 and 4) by

providing immediate, grounded feedback on failed

execution. However, it offered no opportunity for

dialogue, making it less useful for students stuck in the

Planning phase with a blank screen.

The lack of performance gains suggests that students

often used the tools at the wrong time or in a way that did

not meet their immediate learning needs. For example,

using the highly conceptual tutorB@t when the actual

problem was a simple syntax error best diagnosed by

tutorBot+'s test output, or vice versa. This misalignment

may have resulted in wasted effort and frustration,

neutralizing any potential performance benefit derived

from the timeliness of the feedback [13].

5.3. Comparison with Existing Literature

Our findings align with other GenAI studies that report

high positive student sentiment [4], [10], [39]. The high

intent to reuse (over 79% for both tools) confirms the

acceptance of these technologies in the classroom.

The comparison between the two tools is particularly

illuminating. The higher usability score for the

conversational tutorB@t (70.6) suggests that students

inherently prefer the dialogic, flexible interface for their

debugging needs. However, the slightly lower score for

the platform-integrated tutorBot+ (65.2), which was

designed to be highly specific and less conversational,

suggests a trade-off: Specificity is often achieved at the

expense of user experience. Future design work must

reconcile the need for the targeted, grounded feedback of

the platform tool with the perceived ease and friendliness

of the conversational one [33].

5.4. Implications for Practice and Theory

The findings highlight that simply providing access to

https://aimjournals.com/index.php/irjaet

INTERNATIONAL RESEARCH JOURNAL OF ADVANCED

ENGINEERING AND TECHNOLOGY (IRJAET)

https://aimjournals.com/index.php/irjaet

pg. 99

GenAI is a necessary, but insufficient, condition for

improving learning outcomes. The integration must be

pedagogically informed, particularly in how it manages

the metacognitive process.

5.4.1. Practical Implications: Designing for

Metacognitive Engagement

Practitioners utilizing GenAI for programming feedback

must shift the focus from mere accuracy (which LLMs

generally handle well [9]) to pedagogical efficacy—the

ability to promote genuine learning.

1. Iterative and Non-Verbal Scaffolding: Future

tool design, especially for integrated systems like

tutorBot+, should move toward multi-stage, iterative

hints rather than a single large explanation. This could

involve an initial non-verbal hint (e.g., highlighting the

line of code [41]), followed by a conceptual hint, and only

then a detailed explanation. This design forces the student

to re-engage with the problem before escalating the level

of help, thereby enforcing the productive struggle.

2. Contextual Feedback for Planning: For

conversational tools like tutorB@t, the prompt

engineering must be refined to be highly demanding of

the student's existing plan before offering guidance. For

instance, the AI should refuse to proceed until the student

articulates their intended algorithm or current failure

hypothesis, directly targeting the Monitoring phase [29].

3. Mandatory Reflection: Implementing a

mandatory reflective step before allowing students to

copy code from the platform, as suggested by literature

on self-regulated learning. For example, a pop-up

requiring the student to type "I have identified the error

as X, and my plan is to try Y" before revealing the AI's

hint. This ensures the student engages in explicit

metacognitive revision [26].

5.4.2. Theoretical Implications: Moving Beyond

Performance Metrics

The high perception scores (SUS 70.6 and 65.2) and the

high intent to reuse (over 79%) suggest that the GenAI

tools are highly effective at addressing the affective

domain of learning, even if their impact on the cognitive

domain (performance) is minimal in a short-term study.

This requires a theoretical pivot in the evaluation of

educational AI. We must formally incorporate

motivational models, such as the ARCS framework [15],

and self-efficacy instruments [38] into future

methodologies. If GenAI reduces frustration, increases

persistence, and boosts a student's confidence in their

ability to debug—all factors associated with timely and

personalized feedback—then it is profoundly valuable,

even without an immediate lift in test scores. This value

is captured not by traditional performance metrics, but by

measuring engagement, persistence, and self-regulation

over a longer duration [31]. Future studies, as detailed in

Section 5.6, must therefore prioritize the collection of

these affective and motivational data points.

5.5. Study Limitations

Acknowledging the limitations is crucial for interpreting

these results. Key limitations include:

● The quasi-experimental design hinders definitive

causal inference due to potential pre-existing differences

between the groups.

● The duration of the study (one semester) may

have been too short for students to fully adapt their

learning behaviors to the new resources.

● The reliance on a single LLM (GPT-4o-mini)

limits generalizability across the rapidly evolving GenAI

landscape.

5.6. Future Work

To capitalize on the high user acceptance and resolve the

performance ambiguity, future research will concentrate

on three strategic pillars, focusing heavily on

metacognitive scaffolding and affective impact.

5.6.1. Integrating Affective and Motivational

Measures

To fully capture the value demonstrated by the high

perception and reuse rates, future iterations of this study

will incorporate validated psychometric instruments

alongside performance tracking [38].

Specifically, we will integrate the Instructional Materials

Motivation Survey (IMMS) [8] to systematically assess

the motivational impact of the AI tools. The IMMS is

designed around the four components of the ARCS

model [15]:

● Attention: Does the novelty and interactivity of

the AI hold the student's interest?

● Relevance: Does the AI connect the problem to

the student's long-term goals?

● Confidence: Does the AI help the student feel

successful and capable?

● Satisfaction: Does the student feel rewarded and

pleased with the learning outcome?

This quantitative affective data will be triangulated with

semi-structured interviews and think-aloud protocols

during debugging sessions. The goal is to move beyond

the subjective "I liked it" to the measurable "It increased

my persistence when facing an impasse," providing the

https://aimjournals.com/index.php/irjaet

INTERNATIONAL RESEARCH JOURNAL OF ADVANCED

ENGINEERING AND TECHNOLOGY (IRJAET)

https://aimjournals.com/index.php/irjaet

pg. 100

necessary evidence to support the theoretical value of

GenAI as an engagement and confidence builder [38].

5.6.2. Refined Scaffolding and Accessibility Design

Future development will focus on integrating the best

features of both tools while optimizing for the productive

struggle:

1. The Hybrid Interface: We will develop a single,

hybrid interface that presents the grounded, Judge0-based

feedback of tutorBot+ as a default, non-verbal

notification. The student can then click an "Explain/Chat"

button to initiate the tutorB@t conversational dialogue,

ensuring that conceptual support is always secondary to

the execution-grounded diagnosis.

2. Explicit Metacognitive Prompts: Prompt

engineering for GPT-4o-mini will be revised to include

explicit instructions for the AI to address the student's

Planning and Monitoring phases directly. For instance,

the prompt will instruct the AI to phrase its feedback as a

question that forces the student to analyze their

assumption rather than their code line (e.g., "Review your

initial plan. Are you sure you accounted for the edge case

where the input list is empty?").

3. W3C ATAG Compliance: Accessibility is a

pedagogical imperative [17]. Future versions will

undergo a thorough accessibility audit, focusing

specifically on W3C ATAG compliance, ensuring that

keyboard navigation, screen reader compatibility, and

clear text contrast are integrated into the final design,

guaranteeing equitable access to this powerful feedback

mechanism.

5.6.3. Longitudinal Study and Scaffolding

Adjustment

A long-term, multi-cohort study is planned to overcome

the limitation of the single-semester intervention. This

study will track student performance across multiple

courses and systematically compare three groups:

1. Control: Traditional static feedback.

2. Minimal Scaffolding: AI provides only error

location and an abstract hint.

3. Optimal Scaffolding: AI dynamically adjusts

hint specificity based on the student's submission history

and time spent at the impasse.

This longitudinal approach will allow researchers to

observe whether the cumulative effect of timely, high-

quality feedback eventually is associated with the

development of superior long-term metacognitive skills

and sustained performance gains in subsequent,

unassisted assignments.

VI. Conclusion

The integration of Generative AI, specifically GPT-4o-

mini, into undergraduate programming education

through a conversational chatbot (tutorB@t) and a

platform-embedded tool (tutorBot+) is associated with a

significant step forward in addressing the challenge of

timely and scalable feedback. Students overwhelmingly

found both tools useful and easy to use, reflected in

acceptable SUS scores and high intent to reuse. This

confirms the critical value of AI as an accessible, always-

available support system for novice programmers.

However, the lack of a statistically significant difference

in objective performance metrics underscores a key

finding: High utility does not guarantee high academic

impact. This plateau is likely attributable to complex

pedagogical and confounding factors, including student

behaviors driven by academic pressure and the intrinsic

difficulty of interpreting and applying automated

feedback effectively, particularly concerning the

necessary metacognitive regulation.

Ultimately, the power of GenAI lies not in replacing the

human instruction model, but in providing a reliable,

personalized lifeline to students whenever they are stuck.

Future efforts in this domain must focus intently on

pedagogical design—ensuring the AI promotes

productive struggle, measuring its impact on motivation

and self-efficacy, and iteratively refining the interface to

blend specificity with usability. It is through this

balanced approach that we can transition GenAI from a

helpful novelty to a true enhancer of learning outcomes.

References

[1] Azaiz, I., Kiesler, N., & Strickroth, S. (2024).

Feedback-generation for programming exercises with

GPT4. In: Proceedings of the 2024 on Innovation and

Technology in Computer Science Education V. 1.

ITiCSE 2024. ACM (pp. 31–37).

https://doi.org/10.1145/3649217.3653594

[2] Bailey, R., & Garner, M. (2010). Is the

retroalimentación in higher education assessment worth

the paper it is written on? Teachers’ reflections on their

practices. Teaching in Higher Education, 15(2), 187–198.

https://doi.org/10.1080/13562511003620019

[3] Bangs, J. (2007). Teaching perfect and imperfect

competition with context-rich problems. SSRN

Electronic Journal, 92(3), 463.

https://doi.org/10.2139/ssrn.1024000

[4] Bassner, P., Frankford, E., & Krusche, S. (2024). Iris:

an AI-driven virtual tutor for computer science

education. In: Proceedings of the 2024 on Innovation and

Technology in Computer Science Education V. 1. Milan,

Italy: Association for Computing Machinery (pp. 394–

https://aimjournals.com/index.php/irjaet

INTERNATIONAL RESEARCH JOURNAL OF ADVANCED

ENGINEERING AND TECHNOLOGY (IRJAET)

https://aimjournals.com/index.php/irjaet

pg. 101

400). https://doi.org/10.1145/3649217.3653543

[5] Billis, S., Cammarata, N., Mossing, D., Tillman, H.,

Gao, L., Goh, G., Sutskever, I., Leike, J., Wu, J., &

Saunders, W. (2023). Language models can explain

neurons in language models. Available at

https://openaipublic.blob.core.windows.net/neuron-

explainer/paper/index.html.

[6] Brooke, J. (1986). SUS—a quick and dirty usability

scale. In: Usability Evaluation in Industry. United

Kingdom: Taylor & Francis (pp. 189–194).

[7] Bull, C., & Kharrufa, A. (2024). Generative artificial

intelligence assistants in software development

education: a vision for integrating generative artificial

intelligence into educational practice, not instinctively

defending against it. IEEE Sof1tware, 41(2), 52–59).

https://doi.org/10.1109/ms.2023.3300574

[8] Cardoso-Júnior, A., & Faria, R. M. D. D. (2021).

Psychometric assessment of the Instructional Materials

Motivation Survey (IMMS) instrument in a remote

learning environment. Revista Brasileira de Educação

Médica, 45(4), e197. https://doi.org/10.1590/1981-

5271v45.4-20210066.ing

[9] Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira

Pinto, H. P., Kaplan, J., Edwards, H., Burda, Y., Joseph,

N., Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov,

M., Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray,

S., Ryder, N., Pavlov, M., Power, A., Kaiser, L.,

Bavarian, M., Winter, C., Tillet, P., Such, F. P.,

Cummings, D., Plappert, M., Chantzis, F., Barnes, E.,

Herbert-Voss, A., Guss, W. H., Nichol, A., Paino, A.,

Tezak, N., Tang, J., Babuschkin, I., Balaji, S., Jain, S.,

Saunders, W., Hesse, C., Carr, A. N., Leike, J., Achiam,

J., Misra, V., Morikawa, E., Radford, A., Knight, M.,

Brundage, M., Murati, M., Mayer, K., Welinder, P.,

McGrew, B., Amodei2

[10] Kumar Tiwari, S. (2023). Integration of AI and

machine learning with automation testing in digital

transformation. International Journal of Applied

Engineering & Technology, 5(S1), 95–103. Roman

Science Publications.

[11] Kesarpu, S., & Hari Prasad Dasari. (2025). Kafka

Event Sourcing for Real-Time Risk Analysis.

International Journal of Computational and Experimental

Science and Engineering, 11(3).

https://doi.org/10.22399/ijcesen.3715

[12] Singh, V. (2024). The impact of artificial

intelligence on compliance and regulatory reporting. J.

Electrical Systems, 20(11s), 4322–4328.

https://doi.org/10.52783/jes.8484

[13] Real-Time Financial Data Processing Using Apache

Spark and Kafka. (2025). International Journal of Data

Science and Machine Learning, 5(01), 137-

169. https://doi.org/10.55640/ijdsml-05-01-16

https://aimjournals.com/index.php/irjaet

