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ABSTRACT

Context: Effective feedback is critical for novice programmers, but providing it in a timely and scalable manner poses
a significant challenge in higher education [13], [14], [37]. Generative Artificial Intelligence (GenAl), particularly
Large Language Models (LLMs) trained on code [9], [36], offers a promising avenue to automate this process [1],
[22].

Objectives: This quasi-experimental study aimed to evaluate the usability, student perceptions, and academic impact
of two distinct GenAl-assisted feedback tools, both powered by GPT-40-mini: a conversational assistant (tutorB@t)
and a platform-embedded tool integrated with a virtual code evaluator (tutorBot+).

Methods: The study involved 91 undergraduate computer science students, with 37 assigned to the experimental Al-
assisted group. We measured student programming performance, passing rates, and user perception using the System
Usability Scale (SUS) [6] to assess the perceived utility and ease of use of the developed tools.

Results: Students highly valued the immediacy and accessibility of the Al feedback. Perception scores were positive,
with tutorB@t achieving a SUS score of 70.6 and tutorBot+ scoring 65.2, and a high intent to reuse (81% and 79%,
respectively). Crucially, despite positive perceptions, the study found no statistically significant difference in
objective programming performance or passing rates between the groups. This outcome is attributed primarily to
factors such as a lack of group homogeneity, external academic pressures, and occasional student misunderstanding
of the GenAl-provided feedback.

Conclusion: Timely, automated feedback from GenAl is highly valued by students for its accessibility. Yet, the
current study suggests that design limitations (usability, student misunderstandings, external factors) may mask the
direct academic impact, highlighting a need for refined integration and future research incorporating affective
measures [15], [38] to fully understand and unlock the pedagogical potential of LLM-based feedback [33].
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INTRODUCTION
logical errors, and syntax struggles. In this context,

1.1. Background: The Critical Role of Feedback in
Programming Education

Learning to code is fundamentally a recursive process
that relies heavily on iterative practice, failure, and
correction. For novice programmers, the journey from a
conceptual understanding of an algorithm to a successful,
working implementation is fraught with common pitfalls,

https://aimjournals.com/index.php/irjaet

feedback is not merely a mechanism for grading; it is the
essential catalyst for learning, development, and eventual
mastery [13].

Effective feedback must possess three crucial qualities: it
needs to be timely, arriving when the student is still
focused on the problem; it must be targeted, addressing
the specific misconception or error; and it needs to be
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actionable, providing guidance on how to improve rather
than just what is wrong [13], [25]. When feedback is
delayed, students often move on to other tasks, and the
cognitive link between the error and the correction is
weakened, severely diminishing its pedagogical power
[2]. Conversely, when feedback is prompt and high-
quality, it is associated with significantly enhanced
student learning outcomes and self-efficacy [37], [14].

However, the reality of programming education in
modern higher education settings—characterized by
large class sizes and resource constraints—means that
providing this level of personalized, high-quality, and
timely feedback consistently is a massive logistical
challenge [14]. Human instructors struggle to keep up
with the volume of code submissions, leading to
significant delays in grading and personalized guidance.
This systemic delay creates a critical educational
bottleneck, prompting the search for automated solutions.

1.2. The Emergence of Generative Al (GenAl) in
Education

The advent of sophisticated Generative Artificial
Intelligence (GenAl), particularly Large Language
Models (LLMs), has offered a compelling and potentially
transformative solution to this scaling problem [40], [18].
LLMs like those developed by OpenAl have
demonstrated a remarkable ability to understand,
generate, and, critically for this domain, reason about
code [9], [36]. Evaluations suggest these models can
successfully pass technical interviews, generate novel
code snippets, and even fix complex bugs [36].

This capacity represents a significant step beyond earlier
automated educational tools, such as basic error checkers
or rule-based Intelligent Tutoring Systems (ITS) [16],
[30]. Whereas prior systems relied on pre-defined
knowledge bases and structured rules, GenAl offers the
flexibility to synthesize human-like, natural language
explanations and corrections tailored to a student's unique
code submission and context [5]. This allows LLMs to
function not just as evaluators but as genuine virtual
tutors [4], capable of engaging in dialogue and offering
nuanced, context-sensitive support.

1.3. LLMs as Automated Feedback Tools

The application of LLMs to generate feedback for
programming assignments has recently become a prolific
area of research [1]. Studies have explored their efficacy
in automating the grading process [22], creating high-
quality hints [24], and serving as conversational
assistants [10], [11].

These approaches generally fall into two categories,
which inform the design of the tools investigated here:

1. Conversational Chatbots: Tools like tutorB@t
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operate as standalone assistants, allowing students to
paste code or ask general questions. They prioritize
interactive dialogue and context-based guidance [4],
[39].

2. Platform-Integrated  Systems: Tools like
tutorBot+ embed the GenAl directly into the learning
management or programming environment. They
typically ingest compiler errors or test results from an
evaluator (like JudgeO) and use this specific data to
generate highly targeted feedback [27], [28].

Recent advancements have made LLMs more accessible.
The introduction of models like GPT-40-mini [21]
provides a high-performing, yet cost-efficient, option.
This model boasts significant reasoning capabilities
compared to earlier generations while drastically
reducing the computational cost per interaction. This
makes the implementation of high-volume, real-time
feedback systems pedagogically and economically
feasible for large university programs.

1.4. Identifying the Research Gap

While the promise of GenAl in Computer Science
education is clear, two critical gaps persist in the current
literature:

First, there is a distinct lack of comparative studies that
simultaneously evaluate the efficacy of different LLM
deployment mechanisms—specifically, a conversational
chatbot versus a platform-embedded, non-conversational
tool—within a single controlled educational context.
Understanding how the interface design is associated
with student interaction, perception, and learning
outcomes is crucial for practitioners and tool developers
[19].

Second, despite overwhelming evidence that students
enjoy using GenAl tools and find them helpful [32], there
remains a persistent uncertainty regarding whether this
high satisfaction consistently predicts measurable,
objective gains in academic performance. Many studies
focus on subjective usability or qualitative engagement,
leaving the core question of academic impact
unanswered.

This study directly addresses these gaps by implementing
and testing two distinct feedback tools—tutorB@t and
tutorBot+—both powered by the cost-effective yet

powerful GPT-40-mini [21], within a quasi-experimental
setting.

1.5. Research Questions and Study Overview

This research sought to answer the following questions,
using language appropriate for a correlational study:

1. Is the perceived usability of both conversational
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and platform-integrated GenAl feedback tools (tutorB@t
and tutorBot+) acceptable to students, as measured by
standardized usability metrics?

2. Is the provision of automated, timely GenAl
feedback, regardless of deployment method, associated
with a statistically significant difference in student
programming performance (e.g., passing rates or test
success) compared to traditional methods?

The remainder of this article details the pedagogical
foundations underpinning effective feedback, the
architectural design of the two tools, the methodology of
the quasi-experimental study, the quantitative and
qualitative results, and a robust discussion of the
implications of the findings.

II. Related Work

2.1. Pedagogical Foundations of Effective

Programming Feedback

The philosophical foundation of our tool design rests on
established principles of educational psychology and
feedback theory. Hattie and Timperley [13] emphasized
that effective feedback must answer four key questions:
Where am I going? (goals), How am I going? (progress),
Where to next? (directions), and critically, How can I
close the gap? (actionable steps). GenAl is uniquely
positioned to help students close the gap by providing
highly specific, what-to-do-next advice directly related to
their current code [33].

Furthermore, deep learning requires students to develop
metacognition—the ability to monitor and regulate one's
own thinking and learning processes [29], [26]. In
programming, this involves debugging skills, self-
checking assumptions, and planning solutions. Al-driven
feedback, unlike simple pass/fail tests, can foster
metacognition by asking guiding questions or providing
hints that nudge the student toward the solution without
simply giving it away.

Finally, we consider motivational design [15]. John
Keller's ARCS Model (Attention, Relevance,
Confidence, Satisfaction) suggests that technology must
maintain a student's engagement to be effective [15].
Timely, personalized, and constructive feedback
delivered by the AI addresses the "Confidence" and
"Satisfaction" components by reducing the time spent
blocked on trivial errors and providing a sense of
personalized support, which can be highly motivating
[38].

2.1.3. Feedback and the Cultivation of Metacognition:
The Productive Struggle

The process of debugging and problem-solving in
programming is fundamentally a metacognitive exercise.
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Metacognition—often defined as 'thinking about
thinking'—encompasses a set of cognitive skills vital for
self-regulated learning and error recovery [29]. Schraw
and Dennison defined metacognitive awareness along
two dimensions: knowledge of cognition (what a learner
knows about their own cognitive resources and
strategies) and regulation of cognition (how a learner
monitors and controls their learning processes) [29].

Effective feedback in programming must therefore target
not just the solution, but the student's process of reaching
that solution, promoting regulation of cognition through
four distinct phases:

1. Planning: Setting goals and selecting appropriate
strategies (e.g., choosing a loop structure).

2. Monitoring: Tracking progress, comparing
current state to goals, and identifying obstacles (e.g.,
recognizing that a program is stuck in an infinite loop).

3. Evaluation: Assessing the outcome of a strategy
and determining if the final solution is correct and
efficient (e.g., running the program and analyzing the
output).

4. Revision: Adjusting the plan and strategies based
on the evaluation (i.e., debugging).

Failure to achieve a solution often results in an impasse,
which VanLehn argued is the critical precursor to
learning [34]. An impasse-driven learning model
suggests that the most profound learning occurs when a
student recognizes that their current knowledge or
strategy is insufficient, forcing them to engage in self-
repair and knowledge revision.

The critical challenge for automated feedback systems,
including GenAl, is to interrupt this impasse in a
productive way. This is known as managing the
Productive Struggle—providing just enough information
to keep the student motivated (preventing abandonment)
while withholding the complete solution to ensure they
perform the necessary cognitive work (preventing over-
reliance) [33].

Traditional ITS systems managed this productive
struggle via carefully curated hint sequences, often
relying on structured rule sets or cognitive models [34].
In contrast, GenAl systems generate hints and
explanations dynamically using natural language. This
flexibility presents both a strength and a weakness:

° Strength: GenAl can generate a wider variety of
responses and adapt the tone, aligning with the "human
tutor-style" feedback advocated by some researchers
[24], [33].

° Weakness: The LLM's output is not inherently
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optimized for metacognitive scaffolding. Without
stringent prompt engineering, the feedback may become
too verbose, increasing the student's extraneous cognitive
load (information processing unrelated to learning the
core concept) [33]. Alternatively, the LLM may
inadvertently provide information that bypasses the
productive struggle entirely, potentially leading to a
quick fix but no deep learning [7].

Therefore, the efficacy of our two tools—the
conversational tutorB@t and the integrated tutorBot+—
must be analyzed through the lens of which phase of
metacognitive regulation they most effectively support
and whether their interface design inherently manages the
productive struggle. The conversational approach
(tutorB@t) is often associated with supporting the
Planning and Monitoring phases by allowing students to
articulate their thought process and receive general
conceptual guidance. Conversely, the integrated
approach (tutorBot+) is primarily driven by compiler
errors and test case failure, making it highly suitable for
supporting the Evaluation and Revision phases, as its
feedback is explicitly grounded in the execution
outcome.

The tension between these two models—flexibility and
conceptual guidance (tutorB@t) versus rigid, execution-
grounded  diagnosis  (tutorBot+)—is central to
understanding why high usability did not translate to
performance gains in this study. If the Al is used to avoid
the necessary productive struggle, then improved
performance remains elusive, regardless of how friendly
or accessible the tool is.

2.2. Automated Feedback Systems and Intelligent
Tutoring Systems (ITS)

The concept of using technology to automate instruction
and feedback has a long history, dating back to early
Intelligent Tutoring Systems (ITS) [30]. These systems,
built on cognitive models and production rules, aimed to
provide individualized instruction and detailed error
diagnosis [34]. Classic examples include systems that
tracked student attempts and provided targeted hints
based on pre-defined knowledge rules [16].

However, traditional ITS often suffered from a
knowledge acquisition bottleneck—building and
maintaining the domain knowledge base necessary to
cover all possible student errors was incredibly labor-
intensive and challenging to scale across new problems
or programming languages.

GenAl fundamentally alters this landscape. Rather than
relying on explicit programming of error models, LLMs
leverage vast training data to infer common errors and
generate novel, human-like diagnostic explanations [5].
This flexibility positions LLMs as "domain-general”
tutors that can adapt instantly to new problems, thereby
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solving the scale and maintenance issues that plagued
previous automated systems [33]. Studies suggest LLMs
can successfully automate feedback and even generate
hints styled after human tutors [24].

2.3. GenAl Implementation in Computer Science
Education

Current research highlights a bifurcation in how LLMs
are applied to programming instruction:

Conversational Interfaces (tutorB@t Model): Tools
implemented as chatbots (e.g., ChatGPT, or course-
specific bots [10], [11]) are highly praised for their low
barrier to entry and their ability to sustain a human-like
dialogue [39]. They excel at providing immediate,
flexible clarification on concepts, interpreting error
messages, and suggesting general debugging strategies
[4]. The student controls the conversation, which is often
associated with a high sense of autonomy, potentially
leading to increased satisfaction.

Platform-Integrated  Systems (tutorBot+ Model):
Integrating GenAl directly into the development or
learning environment provides key advantages in terms
of context grounding. By piping the student's exact code,
the compiler output, and the test case results directly into
the LLM's prompt, the system ensures the Al's response
is highly relevant and avoids generic advice [27], [28].
Systems that debug code by verifying runtime execution
step-by-step [41] demonstrate the power of deep platform
integration. Our tutorBot+ tool follows this model by
embedding GenAl into the existing flow of code
submission and evaluation, prioritizing the provision of
non-conversational, focused feedback.

2.4. LLM Selection and Benchmarking

The selection of the LLM for this study, GPT-40-mini
[21], was a strategic decision balancing performance,
cost, and accessibility. While early GenAl research often
focused on flagship models, the long-term sustainability
of automated feedback for large student populations
requires models that are both capable and economically
viable.

GPT-40-mini is advertised as a model offering improved
speed and intelligence at a fraction of the cost of its
predecessors [21]. For code tasks, the primary
requirement is strong logical reasoning and adherence to
instructions, which is essential for accurate error
diagnosis. General benchmarks for code models (e.g.,
[9], [36], [42]) demonstrate rapid improvements in the
field. The use of a cost-efficient LLM allows this study
to test the feasibility of deploying automated feedback at
scale, which is crucial for real-world academic adoption.
Furthermore, studies like LiveBench [35] emphasize the
need for ongoing evaluation, justifying our effort to test
a recent model iteration.
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2.5. Ethical and Design Considerations for Al
Feedback

The introduction of powerful GenAl tools into education
is not without its challenges. Chief among these are
concerns related to plagiarism (students using the Al to
solve problems rather than learn) and over-reliance [7],
[19]. To mitigate these risks, the design of effective Al
feedback must adhere to principles of responsible
development [17], specifically by focusing on providing
hints and explanations rather than complete solutions.
The goal must be to promote learning, not to facilitate
cheating.

Furthermore, any deployed educational technology must
be accessible. Future development must align with
standards such as the W3C Authoring Tool Accessibility
Guidelines (ATAG) to ensure the tools benefit all
learners, avoiding the creation of new accessibility
barriers [17]. Assessing the usability, as measured by the
SUS [6], forms the initial step in ensuring a positive and
accessible student experience.

II1. Methods
3.1. Study Design and Participants

This research utilized a quasi-experimental design
conducted over a single academic semester within an
introductory programming course at a university. A true
randomized controlled trial was deemed impractical due
to the ethical constraint of withholding a potentially
beneficial learning resource from an entire group and the
need to integrate the tools seamlessly into the existing
curriculum structure.

The study included 91 undergraduate computer science
students enrolled in the required first-year programming
course. The experimental group, which was granted
access to the GenAl-powered feedback tools (tutorB@t
and tutorBot+), consisted of 37 students. The control
group (54 students) continued to receive feedback via the
standard method: static unit tests from the code
evaluation platform and delayed, instructor-provided
feedback.

3.2. Al Tool Development and Architecture

Both tools utilized the same underlying GenAl model,
GPT-40-mini [21], accessed via a university API key.
This minimized the variable of LLM capability, focusing
the comparison on the interface and integration model.

tutorB@t (Conversational Assistant)

This tool was designed as a separate web-based chatbot
assistant, simulating an interactive tutor.

° Interaction: Students could paste their code or
error messages and ask open-opened questions (e.g.,
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"Why is my loop not stopping?").

° Prompt Engineering: The core prompt was
engineered [39] to instruct the LLM to adopt the persona
of a helpful but non-solution-giving programming tutor.
It emphasized: 1) identifying the error, 2) explaining the
concept behind the error, and 3) providing a structured
hint or a guiding question instead of the corrected code
[24]. This enforced a focus on metacognition.

tutorBot+ (Platform-Integrated Tool)

This tool was integrated directly into the university's
custom programming evaluation platform, operating
non-conversationally.

° Interaction: When a student submitted code, the
platform first ran it through a JudgeO instance (a virtual
code evaluator). If the code failed any test case, the
platform automatically sent a structured prompt to the
LLM.

) Prompt Grounding: The LLM's prompt was
strictly "grounded" by providing the problem description,
the student’s code, the failed test case input/output, and
the exact error message from the compiler (if available).

) Output: The LLM returned a concise, targeted
feedback block that was displayed on the submission
results page. This feedback was formatted as a single,
actionable suggestion, prioritizing efficiency and speed
over dialogue.

3.3. Research Procedure

1. Onboarding: All students in the experimental
group received a mandatory session detailing the
capabilities and appropriate ethical use of the Al tools.
They were explicitly instructed that the tools were for
learning assistance and debugging, not for problem-
solving.

2. Intervention: For ten sequential weekly
programming lab assignments, the experimental group
had unrestricted access to both tutorB@t and tutorBot+
in addition to all traditional resources. The control group
only had access to traditional resources. The assignments
were standardized problem-based learning tasks [12]

covering core introductory topics (e.g., loops,
conditionals, functions).
3. Data Collection: Usage logs (timestamp, number

of interactions) were collected for the experimental
group. Post-intervention, all participants completed a
final assessment. Both groups completed a perception
questionnaire regarding the learning environment.

3.4. Data Collection Instruments

Programming Performance
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Objective performance was measured by two metrics:

1. Test Case Success Rate: The average percentage
of automated test cases passed across all ten assignments.

2. Assignment Passing Rate: The percentage of
assignments that met the required minimum passing
threshold (e.g., 90% test case success).

Usability and Perception

The primary instrument for measuring user perception
was the System Usability Scale (SUS) [6]. The SUS is a
validated, 10-item scale providing a single score from 0
to 100, which offers a quick, reliable measure of a tool’s
perceived usability. This was administered to the
experimental group for both tutorB@t and tutorBot+
separately.

Intent to Reuse was assessed using two direct survey
questions (e.g., "How likely are you to use this tool for
future programming courses?").

3.5. Data Analysis

Quantitative data (performance metrics, SUS scores)
were analyzed using standard statistical methods in the
social sciences. Specifically, an independent samples t-
test was used to compare the Test Case Success Rate and
Assignment Passing Rate between the experimental and
control groups. Descriptive statistics were used to report
and interpret the SUS scores against industry
benchmarks. Qualitative feedback was analyzed
thematically to provide context for the quantitative
results.

IV. Results

4.1. Student Programming Performance and Course
Outcomes

A comparison of the experimental group (Al-assisted)
and the control group (traditional feedback) on the
primary performance metrics yielded no statistically
significant difference over the duration of the study.

Metric Control Group (N=54) Experimental Group p-value (t-test)
Mean (SD) (N=37) Mean (SD)

Average Test Case 78.4 (15.1) 79.9 (14.5)

Success Rate (%)

Assignment Passing 68.5% 73.0%

Rate (%)

The experimental group demonstrated a marginally
higher mean test case success rate and assignment
passing rate, but this difference was not statistically
significant. The study found no evidence that the
integration of automated GenAl feedback, in its current
form, is directly associated with a significant difference
in objective programming performance or course
outcomes.

https://aimjournals.com/index.php/irjaet

4.2. Tool Usability and Perceptions

In stark contrast to the performance metrics, student
perceptions of the tools were highly positive, confirming
the first research question regarding usability and
perceived utility.

The System Usability Scale (SUS) results were as
follows:
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Al Tool

SUS Score (0-100)

Interpretation (Based on
Industry Benchmarks)

Integrated Feedback)

tutorB@t (Conversational 70.6 Acceptable / Good
Chatbot)
tutorBot+ (Platform- 65.2 Acceptable

A score of 68 is generally considered the average
benchmark for usability. Both tools achieved scores
above or near this threshold, indicating that students
found them relatively easy to use, intuitive, and non-
frustrating. The higher score for the conversational
chatbot (tutorB@t) is associated with a perception that
the interactive dialogue format may be slightly more
user-friendly and engaging.

4.3. Intent to Reuse

The high usability translated directly into a strong intent
to reuse both tools, suggesting students see value in
having GenAl as a learning resource, even if the
measured performance gains were minimal.

° 81% of students in the experimental group
reported they would be likely or very likely to use the
conversational chatbot (tutorB@t) again in future
programming courses.

° 79% of students reported they would be likely or
very likely to reuse the platform-integrated feedback
(tutorBot+).

4.4. Qualitative Insights on Al Feedback Value
The thematic analysis of open-ended student comments

provided critical context for the high perception scores.
The value proposition of the GenAl tools consistently

revolved around two themes: immediacy and
accessibility.
Students repeatedly highlighted the advantage of

receiving feedback immediately upon submission,
contrasting it favorably with the several-day delay often
associated with human grading. This timely feedback
allowed them to fix errors and progress with their
learning while the problem was still cognitively salient,
fulfilling a core pedagogical requirement [13], [27].
Furthermore, the 24/7 accessibility was cited as crucial
for students who often worked outside standard office
hours. The Al served as a reliable, always-available
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helper, particularly for debugging small, frustrating
issues [1].

V. Discussion
5.1. Interpretation of Core Findings

The central, and perhaps most critical, finding of this
study is the decoupling of positive student perception
from measurable academic performance [32], [38].
Students found both the conversational (tutorB@t) and
the integrated (tutorBot+) tools usable and valuable,
achieving acceptable SUS scores of 70.6 and 65.2,
respectively. Yet, the presence of these tools was not
associated with a significant advantage in objective
passing rates or test success compared to the control

group.

This suggests that GenAl, in its current implementation,
successfully addresses the usability and motivational
aspects (ARCS model's Confidence/Satisfaction [15]) of
programming education by providing fast, accessible
assistance. However, it may not yet fully address the
deeper pedagogical challenge of forcing students to
engage in productive struggle and genuinely learn from
their mistakes. The Al's value appears to be primarily in
its role as a supportive aid—a time-saver and frustration-
reducer—rather than a guaranteed driver of learning
outcomes [31].

The
and

5.2. Analyzing the Performance Plateau:
Challenge of Productive  Scaffolding
Metacognitive Load

The most critical finding—the high user satisfaction
coupled with non-significant academic performance
gains—demands a deeper, theoretically grounded
explanation beyond general factors like non-
homogeneity or external pressures. We propose that the
plateau in performance is directly related to the difficulty
of designing GenAl feedback that optimizes the student's
productive struggle and minimizes extraneous cognitive
load [33].
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As discussed in Section 2.1.3, deep learning from an error
requires a student to engage in metacognitive regulation:
monitoring the impasse, evaluating the failure, and
revising the plan [29], [34]. Our GenAl tools, while
highly capable, struggled to execute this pedagogical
necessity perfectly, potentially leading to three
metacognitive failure modes:

5.2.1. Failure Mode 1: Bypassing the Impasse via
Over-Scaffolding

The core principle of managing the productive struggle is
providing minimal intervention [33]. While our tools
were explicitly engineered to avoid giving the final
answer, the LLM’s natural language generation
capabilities sometimes produced feedback that was too
comprehensive. For example, when a student submitted
code with a logic error in a loop condition, the Al might
have correctly identified the required correction in terms
of concept (e.g., "You need to iterate up to and including
the length, not just up to the length") but failed to force
the student to find the exact syntactic correction ( vs. ).

In the conversational tutorB@t model, this was
compounded by the student’s ability to "pester" the Al
with follow-up questions until the hint became
functionally equivalent to the solution. The student’s
persistent questioning, while indicative of engagement
(satisfying the ARCS model [15]), effectively allowed
them to bypass the necessary intellectual challenge—the
impasse—potentially leading to a fast solution without
the corresponding metacognitive effort required for
durable learning [34]. The high intent to reuse (81%) for
this conversational tool is associated with students
recognizing its potential for this efficient, albeit
pedagogically suboptimal, shortcut.

5.2.2. Failure Mode 2: Increased Extraneous
Cognitive Load via Verbose Explanations

In contrast to the over-scaffolding issue, the non-
conversational tutorBot+ tool, designed for maximum
specificity by grounding its output in JudgeO test results,
sometimes generated verbose and technically dense
explanations. While the LLM’s ability to synthesize a
detailed diagnosis from raw compiler output is
technically impressive [1], the resultant paragraph could
overwhelm a novice programmer, increasing their
extraneous cognitive load [33].

Instead of focusing their cognitive resources on the
germane load (the effort required for understanding the
underlying concept), students had to expend significant
resources simply trying to decode the AI’s complex,
natural language explanation. This phenomenon may
explain the slightly lower usability score for tutorBot+
(65.2) compared to the chatbot (70.6). The feedback was
theoretically more correct and grounded, but its delivery
hindered the student’s ability to move efficiently through
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the Evaluation and Revision phases of metacognitive
regulation. The sheer volume of information, even when
technically accurate, 1is sometimes considered
counterproductive to the goal of efficient learning [24].

5.2.3. Failure Mode 3: Misalignment of Feedback
Type and Metacognitive Phase

The core design difference between the two tools may
have led to an inherent misalignment with metacognitive
needs:

° tutorB@t (Conversational): Optimized for
conceptual queries and Planning phases (Phase 1).
Students could ask about strategy before writing code.
However, its lack of direct access to run-time errors made
it less effective for the Evaluation phase (Phase 3).
Students had to manually paste errors, losing context.

) tutorBot+ (Integrated): Optimized for the
Evaluation and Revision phases (Phases 3 and 4) by
providing immediate, grounded feedback on failed
execution. However, it offered no opportunity for
dialogue, making it less useful for students stuck in the
Planning phase with a blank screen.

The lack of performance gains suggests that students
often used the tools at the wrong time or in a way that did
not meet their immediate learning needs. For example,
using the highly conceptual tutorB@t when the actual
problem was a simple syntax error best diagnosed by
tutorBot+'s test output, or vice versa. This misalignment
may have resulted in wasted effort and frustration,
neutralizing any potential performance benefit derived
from the timeliness of the feedback [13].

5.3. Comparison with Existing Literature

Our findings align with other GenAl studies that report
high positive student sentiment [4], [10], [39]. The high
intent to reuse (over 79% for both tools) confirms the
acceptance of these technologies in the classroom.

The comparison between the two tools is particularly
illuminating. The higher usability score for the
conversational tutorB@t (70.6) suggests that students
inherently prefer the dialogic, flexible interface for their
debugging needs. However, the slightly lower score for
the platform-integrated tutorBot+ (65.2), which was
designed to be highly specific and less conversational,
suggests a trade-off: Specificity is often achieved at the
expense of user experience. Future design work must
reconcile the need for the targeted, grounded feedback of
the platform tool with the perceived ease and friendliness
of the conversational one [33].

5.4. Implications for Practice and Theory
The findings highlight that simply providing access to
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GenAl is a necessary, but insufficient, condition for
improving learning outcomes. The integration must be
pedagogically informed, particularly in how it manages
the metacognitive process.

5.4.1. Practical Implications: for
Metacognitive Engagement

Designing

Practitioners utilizing GenAl for programming feedback
must shift the focus from mere accuracy (which LLMs
generally handle well [9]) to pedagogical efficacy—the
ability to promote genuine learning.

1. Iterative and Non-Verbal Scaffolding: Future
tool design, especially for integrated systems like
tutorBot+, should move toward multi-stage, iterative
hints rather than a single large explanation. This could
involve an initial non-verbal hint (e.g., highlighting the
line of code [41]), followed by a conceptual hint, and only
then a detailed explanation. This design forces the student
to re-engage with the problem before escalating the level
of help, thereby enforcing the productive struggle.

2. Contextual Feedback for Planning: For
conversational tools like tutorB@t, the prompt
engineering must be refined to be highly demanding of
the student's existing plan before offering guidance. For
instance, the Al should refuse to proceed until the student
articulates their intended algorithm or current failure
hypothesis, directly targeting the Monitoring phase [29].

3. Mandatory  Reflection:  Implementing a
mandatory reflective step before allowing students to
copy code from the platform, as suggested by literature
on self-regulated learning. For example, a pop-up
requiring the student to type "I have identified the error
as X, and my plan is to try Y" before revealing the Al's
hint. This ensures the student engages in explicit
metacognitive revision [26].

5.4.2. Theoretical Implications:
Performance Metrics

Moving Beyond

The high perception scores (SUS 70.6 and 65.2) and the
high intent to reuse (over 79%) suggest that the GenAl
tools are highly effective at addressing the affective
domain of learning, even if their impact on the cognitive
domain (performance) is minimal in a short-term study.

This requires a theoretical pivot in the evaluation of
educational Al. We must formally incorporate
motivational models, such as the ARCS framework [15],
and self-efficacy instruments [38] into future
methodologies. If GenAl reduces frustration, increases
persistence, and boosts a student's confidence in their
ability to debug—all factors associated with timely and
personalized feedback—then it is profoundly valuable,
even without an immediate lift in test scores. This value
is captured not by traditional performance metrics, but by
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measuring engagement, persistence, and self-regulation
over a longer duration [31]. Future studies, as detailed in
Section 5.6, must therefore prioritize the collection of
these affective and motivational data points.

5.5. Study Limitations

Acknowledging the limitations is crucial for interpreting
these results. Key limitations include:

) The quasi-experimental design hinders definitive
causal inference due to potential pre-existing differences
between the groups.

° The duration of the study (one semester) may
have been too short for students to fully adapt their
learning behaviors to the new resources.

) The reliance on a single LLM (GPT-40-mini)
limits generalizability across the rapidly evolving GenAl
landscape.

5.6. Future Work

To capitalize on the high user acceptance and resolve the
performance ambiguity, future research will concentrate
on three strategic pillars, focusing heavily on
metacognitive scaffolding and affective impact.

5.6.1. Integrating Affective and Motivational
Measures

To fully capture the value demonstrated by the high
perception and reuse rates, future iterations of this study
will incorporate validated psychometric instruments
alongside performance tracking [38].

Specifically, we will integrate the Instructional Materials
Motivation Survey (IMMS) [8] to systematically assess
the motivational impact of the Al tools. The IMMS is
designed around the four components of the ARCS
model [15]:

) Attention: Does the novelty and interactivity of
the Al hold the student's interest?

° Relevance: Does the Al connect the problem to
the student's long-term goals?

° Confidence: Does the Al help the student feel
successful and capable?

° Satisfaction: Does the student feel rewarded and
pleased with the learning outcome?

This quantitative affective data will be triangulated with
semi-structured interviews and think-aloud protocols
during debugging sessions. The goal is to move beyond
the subjective "I liked it" to the measurable "It increased
my persistence when facing an impasse," providing the
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necessary evidence to support the theoretical value of
GenAl as an engagement and confidence builder [38].

5.6.2. Refined Scaffolding and Accessibility Design

Future development will focus on integrating the best
features of both tools while optimizing for the productive
struggle:

1. The Hybrid Interface: We will develop a single,
hybrid interface that presents the grounded, Judge0-based
feedback of tutorBot+ as a default, non-verbal
notification. The student can then click an "Explain/Chat"
button to initiate the tutorB@t conversational dialogue,
ensuring that conceptual support is always secondary to
the execution-grounded diagnosis.

2. Explicit Metacognitive Prompts:  Prompt
engineering for GPT-40-mini will be revised to include
explicit instructions for the Al to address the student's
Planning and Monitoring phases directly. For instance,
the prompt will instruct the Al to phrase its feedback as a
question that forces the student to analyze their
assumption rather than their code line (e.g., "Review your
initial plan. Are you sure you accounted for the edge case
where the input list is empty?").

3. W3C ATAG Compliance: Accessibility is a
pedagogical imperative [17]. Future versions will
undergo a thorough accessibility audit, focusing
specifically on W3C ATAG compliance, ensuring that
keyboard navigation, screen reader compatibility, and
clear text contrast are integrated into the final design,
guaranteeing equitable access to this powerful feedback
mechanism.

5.6.3. Longitudinal
Adjustment

Study and  Scaffolding

A long-term, multi-cohort study is planned to overcome
the limitation of the single-semester intervention. This
study will track student performance across multiple
courses and systematically compare three groups:

1. Control: Traditional static feedback.

2. Minimal Scaffolding: Al provides only error
location and an abstract hint.

3. Optimal Scaffolding: Al dynamically adjusts
hint specificity based on the student's submission history
and time spent at the impasse.

This longitudinal approach will allow researchers to
observe whether the cumulative effect of timely, high-
quality feedback eventually is associated with the
development of superior long-term metacognitive skills
and sustained performance gains in subsequent,
unassisted assignments.
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VI. Conclusion

The integration of Generative Al, specifically GPT-4o-
mini, into undergraduate programming education
through a conversational chatbot (tutorB@t) and a
platform-embedded tool (tutorBot+) is associated with a
significant step forward in addressing the challenge of
timely and scalable feedback. Students overwhelmingly
found both tools useful and easy to use, reflected in
acceptable SUS scores and high intent to reuse. This
confirms the critical value of Al as an accessible, always-
available support system for novice programmers.

However, the lack of a statistically significant difference
in objective performance metrics underscores a key
finding: High utility does not guarantee high academic
impact. This plateau is likely attributable to complex
pedagogical and confounding factors, including student
behaviors driven by academic pressure and the intrinsic
difficulty of interpreting and applying automated
feedback effectively, particularly concerning the
necessary metacognitive regulation.

Ultimately, the power of GenAl lies not in replacing the
human instruction model, but in providing a reliable,
personalized lifeline to students whenever they are stuck.
Future efforts in this domain must focus intently on
pedagogical design—ensuring the Al promotes
productive struggle, measuring its impact on motivation
and self-efficacy, and iteratively refining the interface to
blend specificity with usability. It is through this
balanced approach that we can transition GenAl from a
helpful novelty to a true enhancer of learning outcomes.
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