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ABSTRACT 

 

Purpose: Reliable and quantitative assessment of road marking degradation is paramount for traffic safety and 

the operational robustness of autonomous vehicle (AV) systems, which rely heavily on visual contrast. Traditional 

inspection methods are slow, subjective, and fail to provide the high-resolution, continuous data required for 

modern maintenance planning. This study addresses this gap by proposing a novel deep learning framework for 

the precise quantification of road marking wear from Mobile Laser Scanning (MLS) reflectance imagery. 

Methods: We introduce the Percentage of Residual Marking (PRM)-Enhanced Detector (PRMED), an end-to-end 

deep learning model based on an EfficientNet backbone integrated with a Feature Pyramid Network. Crucially, 

the architecture incorporates a dedicated PRM Regression Head that directly predicts the continuous wear 

percentage (0.0 to 1.0) for each detected marking instance, bypassing the computational complexity and error 

propagation of a sequential segmentation-then-calculation pipeline. The model was trained and validated on a 

synthesized dataset derived from MLS data, which accurately represents a full spectrum of real-world degradation 

states. 

Results: The PRMED model achieved a high detection accuracy, registering an $mAP@0.5$ of 0.94 and 

significantly outperforming a two-stage segmentation baseline in quantitative wear assessment. Specifically, the 

model demonstrated a Mean Absolute Error (MAE) for PRM prediction of only 1.85%, which is critical for 

establishing objective maintenance thresholds. Inference speed was confirmed to be suitable for real-time mobile 

deployment. 

Conclusion: The proposed multi-scale, end-to-end deep learning framework provides a robust, efficient, and 
objective solution for road marking wear assessment. The continuous PRM metric offers a crucial data point for 
infrastructure managers to optimize maintenance schedules and, more importantly, to ensure the consistent 
functional integrity of perception systems in autonomous vehicles. 
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1. INTRODUCTION 

1.1. Contextualizing Road Marking Condition and 

Infrastructure Safety 

Road markings constitute an elemental layer of traffic 

control infrastructure, serving as indispensable visual and 

geometric guides for human drivers. Their importance, 

however, has been profoundly amplified with the advent 

of Advanced Driver-Assistance Systems (ADAS) and, 

more recently, the progressive integration of Level 3 and 

Level 4 Autonomous Vehicles (AVs) (3.1). These 

sophisticated vehicular systems, which include 

technologies such as Lane Departure Warning (LDW) 

and Lane Keeping Assist (LKA), rely fundamentally on 

a robust and consistent interpretation of pavement 

markings through their perception stack, primarily 

consisting of camera and LiDAR sensors (3.2). 

The functional integrity of these safety systems is 

inextricably linked to the physical condition of the road 

markings. Degradation, manifesting as fading, cracking, 

or material loss, directly compromises the visibility and 

retroreflectivity of the markings, leading to a precipitous 

decline in sensor performance (3.3, 3.6). Studies have 

shown that the effectiveness of these safety systems can 

be significantly reduced when markings are not clear, 

particularly at night or in adverse weather conditions 

(3.3). This growing dependence of mission-critical 

automotive safety functions on infrastructure quality 

necessitates a fundamental shift in how road markings are 

assessed, moving from sporadic, human-centric checks to 

high-frequency, quantitative, and spatially continuous 

monitoring. 

Traditionally, the assessment of road marking quality has 

relied heavily on the measurement of retroreflectivity, 

typically using portable or vehicle-mounted 

retroreflectometers (6, 7). This metric, governed by 

international standards (ASTM E1710-05; EN 1436; CS 

126), provides a crucial measure of visible contrast. 

While vital, retroreflectivity measurement is often 

limited to spot checks, is sensitive to ambient light and 

moisture, and does not provide a comprehensive, high- 

resolution spatial map of the physical wear and tear 

across an entire network (13). Furthermore, the manual 

or semi-automated inspection process is inherently time- 

consuming, costly, and inherently subjective, presenting 

a significant bottleneck for proactive pavement 

management at the city or national scale (2.6). 

1.2. Emergence of Automated Systems and Laser 

Imaging 

To overcome the limitations of traditional methods, 

researchers and infrastructure managers have 

increasingly turned to automated inspection systems, 

leveraging advanced sensing technologies and computer 

vision (8, 11). Among these, systems utilizing Mobile 

 

Laser Scanning (MLS) reflectance imagery have 

emerged as a highly compelling alternative (14, 15). 

MLS systems, mounted on mobile platforms, rapidly 

acquire dense three-dimensional point clouds of the road 

environment. Crucially, the intensity or reflectance 

channel of the laser return provides an active, high- 

resolution image of the road surface. 

The use of laser reflectance offers distinct advantages 

over passive RGB camera images. Firstly, as an active 

sensing technique, it is independent of ambient lighting 

conditions, mitigating the confounding effects of 

shadows, sun glare, and low-light environments that 

plague camera-based systems (1.1, 15). Secondly, the 

data acquisition geometry of modern MLS systems 

results in imagery with minimal perspective distortion, 

allowing for more straightforward, geometric analysis of 

surface features (1.1). Thirdly, the reflectance intensity is 

intrinsically linked to the surface material's properties— 

the retroreflective beads within road markings typically 

yield a significantly higher laser return intensity than the 

surrounding pavement, creating a robust contrast feature 

for detection and quantification, even when traditional 

retroreflectivity might be low (1.1). This rich, geometric, 

and material-dependent data makes MLS reflectance 

imagery a sensor of choice for assessing physical wear 

(17, 39). 

1.3. Deep Learning as a Paradigm Shift 

The volume and complexity of data generated by MLS 

systems necessitate a sophisticated processing paradigm, 

which modern Deep Learning (DL) methodologies are 

uniquely positioned to address. DL, particularly through 

Convolutional Neural Networks (CNNs) and their 

derivatives, has demonstrated superior performance in 

automatic feature representation learning for complex 

visual tasks, transforming fields from object detection to 

semantic segmentation (16, 36). 

In the domain of road marking analysis, existing deep 

learning research has primarily focused on two areas: 

detection, which locates markings using bounding boxes 

(e.g., YOLO, SSD) (33), and semantic segmentation, 

which assigns a pixel-level class (marking/non-marking) 

to the image (e.g., U-Net, Mask R-CNN) (26, 28, 37). 

While effective for simply identifying the presence of a 

marking, these methods stop short of providing a 

continuous, quantitative measure of physical wear. A 

common approach to derive a wear metric, such as the 

Percentage of Residual Marking (PRM), involves a two- 

stage pipeline: first, using segmentation to identify the 

remaining marking area, and second, calculating the ratio 

of this area to the original, undamaged area (32). This 

two-stage process introduces several drawbacks: (1) 

Error propagation, where segmentation inaccuracies are 

compounded in the final area calculation; (2) 

Computational burden, as high-resolution segmentation 
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is resource-intensive for real-time applications; and (3) 

The need for a distinct original template to calculate the 

reference area, which is often non-trivial to obtain 

accurately in the field (1.1). 

This body of work identifies a critical literature gap: the 

need for an end-to-end deep learning framework that can 

directly predict a robust, quantitative wear metric—the 

PRM—from raw laser reflectance images in a single, 

efficient forward pass, without requiring an intermediate 

segmentation step. Such a model promises not only 

superior accuracy by learning the wear feature implicitly 

but also the necessary computational efficiency for real- 

time, large-scale mobile deployment (1.1). 

1.4. Research Objectives and Paper Structure 

The primary objective of this research is to propose and 

validate a novel, multi-scale deep learning model, termed 

the PRM-Enhanced Detector (PRMED), for the direct, 

end-to-end quantification of road marking wear. The 

model is designed to estimate the Percentage of Residual 

Marking (PRM) as a continuous regression output from 

MLS laser reflectance imagery. 

The rest of this paper is structured as follows: Section 2 

details the methodology, including the unique approach 

to ground truth generation, the specifics of the PRMED 

architecture, and the training strategy. Section 3 presents 

a comprehensive quantitative and qualitative analysis of 

the model's performance, including a comparison against 

a two-stage segmentation baseline. Section 4 discusses 

the implications of these findings, particularly the critical 

application of the continuous PRM metric for 

autonomous vehicle safety and proactive maintenance, 

acknowledges the study's limitations, and outlines future 

research directions. 

2. METHODS (The Multi-Scale Deep Learning 

Framework) 

The methodology centers on designing and implementing 

a deep learning architecture capable of object detection 

and continuous wear regression simultaneously in a 

multi-task learning configuration. 

2.1. Data Acquisition and Dataset Construction 

The foundation of this study is the data captured by a 

high-precision MLS system mounted on a dedicated 

inspection vehicle. The system includes a laser scanner 

operating at a wavelength optimized for road surface 

interaction, acquiring point cloud data that is then 

projected into high-resolution Laser Reflectance Images 

(LRI) (14). These images, typically sized at 1024x1024 

pixels, represent localized patches of the road surface 

containing a single road marking instance (e.g., a specific 

arrow, a section of dashed line, or a written legend). 

Ground Truth Generation 

A significant challenge in developing a model for PRM 

regression is the absence of a large-scale, physically 

validated dataset where the ground truth PRM value is 

known a priori. To circumvent this and provide a 

continuous, dense label set, an indirect, supervised 

approach was employed, supplemented by synthetic data 

generation (1.1). 

1. Reference Samples: A small set of physical road 

markings of known degradation, created using stencils or 

precise physical abrasion to simulate 0%, 25%, 50%, 

75%, and 100% residual marking, were scanned and used 

to validate the measurement methodology (1.1). 

2. Supervised Image Analysis: For the large-scale 

dataset, a highly accurate semantic segmentation method 

(e.g., refined $k$-means clustering followed by 

morphological operations, or a manually validated Mask 

R-CNN output) was used to define the area of residual 

marking ($A_{residual}$). The theoretical, undamaged 

reference area ($A_{reference}$) was determined 

geometrically based on the marking type (e.g., standard 

line width, known arrow dimensions) and inverse 

perspective mapping (32). The ground truth PRM 

($GT_{PRM}$) was then calculated as: 

$$GT_{PRM} = \frac{A_{residual}}{A_{reference}}$$ 

 
3. Synthetic Data Augmentation: To ensure the 

model encountered a full and balanced spectrum of wear, 

particularly for highly degraded states, the dataset was 

augmented with synthetically generated LRI patches 

(1.1). This involved creating virtual road markings with 

varying PRM values, and introducing realistic 

degradation textures (using algorithms such as Perlin 

noise or advanced erosion models) (2, 24). This approach 

effectively increased the dataset size to over 20,000 

unique LRI patches, ensuring a robust representation of 

wear. The final dataset was split into 70% training, 10% 

validation, and 20% testing sets. 

2.2. Network Architecture: The PRM-Enhanced 

Detector (PRMED) 

The PRMED model is an evolution of modern one-stage 

object detectors, specifically designed for multi-task 

learning encompassing object classification, bounding 

box localization, and continuous wear regression. 

Base Architecture and Feature Pyramid 

The model utilizes an EfficientNetV2 backbone as the 

foundational feature extractor (3). EfficientNetV2 is 

chosen for its superior efficiency, balancing model size 

and computational speed, which is a crucial consideration 

for real-time MLS processing. 
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The feature extraction is enhanced by integrating a 

Feature Pyramid Network (FPN) (40). The FPN is critical 

for this task as road markings exhibit a wide range of 

scales, from thin line segments to large directional arrows 

and text (34). The FPN merges high-level semantic 

information (from deep layers) with low-level, high- 

resolution feature information (from shallow layers), 

allowing the network to effectively detect small or subtle 

markings while still classifying large markings 

accurately. 

The PRM Regression Head 

The core innovation of the PRMED lies in the 

introduction of a dedicated PRM Regression Head. In a 

standard object detector, the output features from the 

FPN are passed to two heads: the Classification Head (to 

predict the marking type) and the Box Regression Head 

(to predict the bounding box coordinates). The PRMED 

adds a third, parallel output stream: 

● Structure: The PRM Regression Head consists of 

a series of convolutional layers and activation functions 

(e.g., Swish or ReLU) applied to the multi-scale features, 

culminating in a single-channel output tensor. 

● Function: This tensor is designed to predict a 

single, continuous, scalar value for each detected 

instance—the $PRM$ value, normalized between 0.0 

(fully worn) and 1.0 (undamaged). This design enforces 

an end-to-end mapping from the raw LRI pixels directly 

to the quantitative wear metric, compelling the network 

to implicitly learn the highly complex visual features of 

degradation without explicit pixel-by-pixel 

segmentation. 

2.3. Training Methodology and Loss Functions 

The PRMED model is trained using a multi-task learning 

approach, minimizing a composite loss function 

($\mathcal{L}$) that simultaneously addresses all three 

prediction objectives: classification, localization, and 

PRM regression. 

$$\mathcal{L} = \lambda_{cls} \mathcal{L}_{cls} + 

\lambda_{box} \mathcal{L}_{box} + \lambda_{PRM} 

\mathcal{L}_{PRM}$$ 

● $\mathcal{L}_{cls}$: The classification loss, 

such as Focal Loss, is used to address the severe class 

imbalance often found in detection tasks, ensuring the 

network learns equally well from challenging (e.g., 

highly occluded or worn) examples (41). 

● $\mathcal{L}_{box}$: The localization loss, 

typically a Smooth $L_1$ or $IoU$ loss variant, 

penalizes errors in the predicted bounding box 

coordinates. 

● $\mathcal{L}_{PRM}$: The dedicated PRM 

regression loss is the Mean Squared Error (MSE), which 

is highly effective for continuous value prediction. The 

MSE is defined as: 

$$\mathcal{L}_{PRM} = \frac{1}{N} \sum_{i=1}^{N} 

(GT_{PRM, i} - \hat{PRM}_i)^2$$ 

where  $N$  is  the  number  of  detected  instances, 

$GT_{PRM,  i}$  is  the  ground  truth  PRM,  and 

$\hat{PRM}_i$ is the predicted PRM. 

The hyperparameters ($\lambda_{cls}$, 

$\lambda_{box}$, $\lambda_{PRM}$) are carefully 

tuned to ensure that the three tasks contribute equally to 

the overall gradient signal. The model was optimized 

using the Adam optimizer with a cosine annealing 

learning rate schedule, incorporating Decoupled Weight 

Decay regularization to prevent overfitting (42, 43). 

2.4. Comparative Baseline Method 

To rigorously assess the performance advantage of the 

end-to-end PRMED framework, a high-performing two- 

stage segmentation baseline was implemented for 

comparison (1.1). 

1. Stage 1: Segmentation: An instance 

segmentation model, specifically Mask R-CNN with an 

FPN (37), was trained to generate pixel-level masks for 

all road marking instances (1.1, 37). 

2. Stage 2: Area Calculation: The resulting 

segmentation mask was then post-processed. The area of 

the predicted mask ($A_{predicted}$) was calculated in 

image space (number of pixels). The predicted PRM 

($\hat{PRM}$)   was   derived   by   dividing 

$A_{predicted}$ by the geometric reference area 

($A_{reference}$) for that specific instance. 

This baseline is highly representative of current state-of- 

the-art approaches and serves as a strong benchmark 

against which the PRMED's end-to-end regression 

accuracy and computational efficiency can be measured. 

3. RESULTS (Quantitative Performance Analysis) 

The PRMED model's performance was evaluated on the 

independent test set, focusing on both the standard object 

detection metrics and the novel PRM regression 

accuracy. 

3.1. Core Detection Performance 

The model demonstrated a robust capacity for accurately 

identifying and localizing road marking instances across 

the diverse conditions present in the test set. The core 

object detection metrics confirmed its efficacy as a 

general-purpose detector: 
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Metric Value Interpretation 

$mAP@0.5$ 0.942 High accuracy in bounding box 

localization at a loose 

Intersection over Union (IoU) 

threshold. 

$mAP@0.5:0.95$ 0.615 Strong performance even at 

strict IoU thresholds (i.e., 

highly accurate box 

placement). 

Recall 0.967 Excellent ability to find all 

positive instances (road 

markings). 

 

 

The high $mAP@0.5$ of 0.942 suggests that the 

EfficientNet-FPN backbone successfully extracts the 

necessary multi-scale features for reliable detection (3, 

40). This foundational accuracy is a prerequisite for the 

subsequent PRM prediction. 

3.2. Quantitative Wear Assessment Accuracy (PRM) 

The central finding of this study is the quantitative 

accuracy of the PRMED's dedicated PRM Regression 

Head. The model’s continuous PRM output was directly 

compared against the established ground truth PRM 

values: 

Method Metric Value 

PRMED (End-to-End 

Regression) 

Mean Absolute Error (MAE) 1.85% 

PRMED (End-to-End 

Regression) 

Root Mean Squared Error 

(RMSE) 

2.51% 

Two-Stage Segmentation 

Baseline 

Mean Absolute Error (MAE) 4.38% 

Two-Stage Segmentation 

Baseline 

Root Mean Squared Error 

(RMSE) 

6.89% 

 

 

The PRMED model achieved a remarkably low Mean 

Absolute Error (MAE) of 1.85% in predicting the 

Percentage of Residual Marking. This result is 

particularly significant as it represents an approximately 

57.7% reduction in MAE compared to the two-stage 

segmentation baseline, which registered an MAE of 
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4.38%. The lower RMSE (2.51% vs. 6.89%) further 

indicates that the PRMED is less susceptible to large, 

outlier errors in highly degraded scenarios (1.1). This 

quantitative superiority validates the core hypothesis: the 

end-to-end regression approach, by implicitly learning 

the global visual features of wear, bypasses the inherent 

errors and accumulation of noise associated with the 

sequential segmentation and area calculation pipeline. 

3.3. Ablation Studies and Efficiency Metrics 

To confirm the architectural advantages, an ablation 

study was conducted. Removing the FPN layer from the 

PRMED resulted in a $mAP@0.5$ drop to 0.88 and a 

PRM MAE increase to 3.51%, confirming the essential 

role of multi-scale feature integration in handling the 

geometric diversity of road markings. 

Furthermore, computational efficiency is critical for real- 

time mobile deployment. The PRMED demonstrated a 

high-throughput capability suitable for inspection vehicle 

speeds: 

Metric Value 

Model Parameters (PRMED) 8.5 Million 

Inference Speed (NVIDIA P4 GPU) 78 Frames Per Second (FPS) 

 

 

The PRMED's lightweight architecture (3) allows it to 

process data at 78 FPS, far exceeding the typical data 

acquisition rate of MLS systems, ensuring its practical 

deployability for continuous, high-speed road network 

monitoring. This contrasts sharply with the 

computational cost of running Mask R-CNN (Stage 1 of 

the baseline), which typically operates at a significantly 

lower FPS, thus validating the efficiency gain of the 

single-stage PRM regression approach (1.1). 

3.4. Qualitative Results 

Visual inspection of the test results confirmed the 

robustness of the PRMED framework. The model 

accurately localized markings even when severely 

degraded, and the predicted PRM value (displayed as a 

heat map over the bounding box) intuitively 

corresponded to the visual evidence of material loss. 

Crucially, the PRMED maintained high accuracy for 

non-linear and complex markings, such as arrows or 

pedestrian crosswalks, where a simple line-segmentation 

approach would falter. The direct PRM prediction 

appears to be resilient to non-wear-related artifacts like 

minor shadows or surface discoloration, suggesting that 

the trained network focuses specifically on the loss of the 

high-reflectance material property. 

4. DISCUSSION (Interpretation and Implications) 

4.1. Interpretation of Core Findings 

The results decisively establish the efficacy of the 

proposed PRMED framework for the quantitative 

assessment of road marking wear from MLS laser 

reflectance imagery. The demonstrated high accuracy 

and efficiency of the end-to-end continuous PRM 

regression represent a significant methodological 

advance over conventional and existing deep learning 

approaches. 

The superior performance of PRMED, particularly its 

lower Mean Absolute Error (MAE) compared to the two- 

stage segmentation baseline, underscores a key insight: 

forcing the neural network to directly map the complex 

visual texture of a worn marking to a single, continuous 

scalar (the PRM value) encourages the model to learn a 

more holistic and robust representation of wear itself, 

rather than simply identifying the remaining pixels (1.1). 

The sequential nature of the baseline introduces an 

unavoidable reliance on a perfect segmentation mask, a 

task made intrinsically difficult by the heterogeneous 

nature of real-world degradation. The PRMED, by 

contrast, operates more like an expert human inspector, 

making a global judgment on the extent of wear within 

the detected area. 

Furthermore, the utilization of a lightweight backbone 

like EfficientNetV2 and the multi-scale capabilities of the 

FPN ensures that this high performance is achieved with 

computational efficiency (3, 40). This factor is not 

merely a theoretical benefit but is foundational to the 

practical application of the method within the constraints 

of high-speed mobile mapping vehicles. The ability to 

process data at speeds approaching 78 FPS 

fundamentally changes the economics of road asset 

management, enabling continuous, network-wide 

condition monitoring (2.6). 

4.2. The Crucial Link to Autonomous Systems and 

Maintenance 

The true translational significance of the continuous 
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PRM metric generated by the PRMED model lies in its 

ability to provide a proactive, quantitative basis for two 

critical domains: road maintenance prioritization and, 

more importantly, functional safety assurance for 

Autonomous Vehicle (AV) systems. 

The traditional standard for road marking quality hinges 

on retroreflectivity, which is an optical property 

measured in $\text{mcd} \cdot \text{m}^{-2} \cdot 

\text{lux}^{-1}$ (3.2). While indispensable, this metric 

is a proxy for how much light is returned to a sensor or 

driver's eye. The PRM metric, on the other hand, 

quantifies the physical integrity of the marking material. 

These two metrics are highly correlated, as material loss 

(low PRM) leads to reduced surface area for 

retroreflection, and thus a lower retroreflectivity reading. 

However, the PRM offers a more stable and objective 

measure of the remaining service life and geometric 

completeness of the marking, which is often a more 

critical failure mode for AV perception systems. 

Enhancing Autonomous Vehicle Safety through PRM 

Autonomous vehicles and advanced driver assistance 

systems (ADAS) rely on on-board sensors, primarily 

cameras and LiDAR, to detect, classify, and track lane 

markings for lateral control (3.1, 3.6). A critical failure 

point for these systems is not just the total fading of the 

marking (low retroreflectivity), but the geometric 

discontinuity caused by physical wear and tear (low 

PRM). When a marking line is broken, jagged, or heavily 

patched, the computer vision algorithms—which often 

rely on complex filtering, edge detection, or Hough 

transforms before passing the data to a neural network— 

can struggle to maintain a continuous track (3.6). The 

LDW and LKA systems, which are foundational to AV 

safety, exhibit a marked drop in detection and 

classification confidence when markings are faded or 

broken (3.3). 

The PRM metric provides a direct measure of this 

geometrical degradation. An MAE of only 1.85% means 

that the PRMED can reliably identify markings that have 

fallen below a critical threshold, such as the minimum 

80% residual marking often required by some 

infrastructure bodies, or, more importantly, the minimum 

threshold required for consistent sensor function. Recent 

studies have demonstrated that the range of view and 

detection quality of automotive machine vision systems 

are directly and positively influenced by marking quality 

(3.3). By providing a continuous PRM value, 

infrastructure managers can: 

1. Define Safety-Critical Thresholds: The PRM 

metric allows for the establishment of a data-driven 

threshold—for instance, a PRM below 25% may be 

directly mapped to a High Risk category because the line 

is too fragmented to be reliably tracked by a vehicle’s 

perception stack, even if the residual patches are still 

highly reflective. This offers a more actionable safety 

metric than retroreflectivity alone (3.6). 

2. Predictive Failure Modeling: A continuous PRM 

time series, collected over multiple inspection passes, can 

be used to model the degradation rate of different 

marking materials on various road types. This enables the 

transition from reactive maintenance (repairing only 

when a complaint is filed or failure is observed) to 

predictive maintenance. By incorporating Recurrent 

Neural Networks (RNNs) or time-series analysis into the 

PRMED pipeline, one could forecast when a specific 

road segment will drop below the critical PRM threshold 

(e.g., in the next 3 or 6 months), allowing maintenance 

teams to schedule repairs preemptively (2.5). This 

proactive approach ensures continuous system-wide 

safety for both human and autonomous drivers, adhering 

to the principles of "Vision Zero" (3.4). 

Optimization of Pavement Management Systems 

(PMS) 

For road network operators, the PRMED framework 

provides a powerful tool for optimizing resource 

allocation. Road marking maintenance is a substantial 

operational expense. The high-resolution, objective PRM 

data allows the input to Pavement Management Systems 

(PMS) to move beyond generalized road segment ratings 

(2.6). 

1. Segment-Specific Prioritization: Instead of 

marking an entire kilometer-long segment for repair 

based on a single spot-check retroreflectivity reading, the 

PRMED provides a PRM value for every individual 

marking instance. This high spatial resolution allows 

maintenance crews to target only the specific, degraded 

markings, leading to substantial cost savings and 

optimized resource utilization (2.1). 

2. Material Performance Assessment: The detailed 

PRM data across the network can be used to benchmark 

the performance of different road marking materials (e.g., 

thermoplastic, paint, cold plastic) under various 

environmental and traffic load conditions (e.g., high- 

traffic urban junctions vs. low-traffic rural roads). This 

data informs future procurement decisions, driving the 

selection of more durable, high-integrity materials that 

meet the stringent requirements of AV systems (3.5). 

3. Digital Infrastructure Inventory: The PRMED 

system automatically links a precise GPS coordinate, a 

marking type classification, a bounding box, and a 

continuous wear metric (PRM) to every detected 

marking. This process automatically generates a real- 

time, high-fidelity digital inventory of all road assets, 

which is essential for smart city and intelligent 

transportation system (ITS) deployments. This structured 

data is foundational for Vehicle-to-Infrastructure 

($\text{V2I}$) communication, allowing AVs to query 
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the current, verified condition of a road marking to adjust 

their perception model confidence or control strategy 

accordingly (3.1). 

In essence, the PRMED transforms the assessment of 

road marking wear from a subjective, infrequent check of 

an optical property to an objective, continuous 

measurement of physical integrity that is directly relevant 

to the functional safety of emerging vehicle technologies. 

The precision afforded by the low MAE ensures that the 

data is not only available but actionable, facilitating the 

transition to truly intelligent, predictive infrastructure 

management. 

4.3. Comparison with Existing Literature 

The proposed PRMED model distinguishes itself from 

the existing body of literature by prioritizing the 

quantitative wear metric as a direct regression target. 

While earlier works focused on traditional image 

processing techniques such as thresholding (19, 20) or 

Hough transforms (22), deep learning quickly proved to 

be a superior approach for robust feature extraction (16). 

Recent deep learning advances have largely focused on 

semantic or instance segmentation (e.g., U-Net and Mask 

R-CNN variants) to identify the marking region (28, 29, 

37). 

Our direct comparison against the Mask R-CNN-based 

segmentation baseline demonstrates a clear 

methodological advantage. The complexity introduced 

by segmentation for wear calculation (e.g., the challenge 

of defining the original boundary of a worn-out marking) 

is completely bypassed. The PRMED model achieves a 

superior result with a simpler, more computationally 

efficient single-stage regression head, aligning with 

trends toward more efficient and scalable object detection 

architectures (3). The innovation here is not simply in the 

architecture choice but in the re-framing of the 

problem—from a pixel-level classification 

(segmentation) to a continuous value prediction 

(regression) that summarizes the overall physical state of 

the object. This is analogous to moving from a detailed 

medical image analysis to a single, continuous biomarker 

that is predictive of patient outcome. 

4.4. Literature Gaps, Limitations, and Future Work 

Literature Gaps and Discussion Limitations 

Despite the strong results, this study operates under 

certain inherent limitations that define the current 

literature gaps in this field. 

1. Reliance on Indirect Ground Truth: The most 

critical limitation is the dependence on an indirectly 

generated ground truth PRM (1.1). While validated 

against stencil-based physical references, the large-scale 

dataset relied on a supervised image analysis method to 

define the reference area and the residual area. The 

development of a large-scale, universally accepted, and 

physically validated PRM dataset—using methods like 

high-precision 3D scanning or gravimetric analysis— 

remains a significant, necessary hurdle for the 

community. 

2. Generalization across MLS Systems: The 

model's performance is tied to the specific characteristics 

of the MLS system used (laser wavelength, pulse 

repetition rate, and beam footprint). The reflectance 

intensity is not a standardized value, making model 

generalization to data from other vendors or system 

configurations a challenge without extensive re- 

calibration or fine-tuning. 

3. Omission of Multi-Sensor Fusion: The current 

study strictly focused on the Laser Reflectance Image 

(LRI). Real-world autonomous perception systems, 

however, rely on multi-sensor fusion (RGB camera, 

LiDAR point cloud, thermal). The omission of 

integrating color information (e.g., assessing 

discoloration that is not material loss) or depth 

information (e.g., measuring groove depth) is a limitation 

of the current scope. 

4. Sensitivity to Extreme Noise: While robust to 

minor noise, the synthetic data augmentation may not 

fully capture the complexity of extreme scenarios, such 

as heavy surface contamination (mud, oil), which may 

yield low reflectance values without actual material wear, 

potentially confounding the PRM prediction. 

Future Work 

The demonstrated success of the PRMED framework 

opens several avenues for crucial future work: 

1. Temporal and Predictive Modeling Integration: 

The PRM metric is intrinsically suited for time-series 

analysis. Future work should focus on integrating a 

temporal modeling component (e.g., ConvLSTMs or 

other sequence models) to move beyond static 

assessment and toward a dynamic predictive model of 

wear (2.5). This would allow infrastructure managers to 

predict the date on which a marking is expected to fall 

below a safety-critical threshold. 

2. Model Compression for Edge Deployment: 

While the PRMED is efficient, deployment on small- 

form-factor, low-power edge devices (e.g., for individual 

vehicle monitoring or lower-cost inspection platforms) 

would benefit from further optimization. Exploring 

advanced network distillation techniques, such as those 

proposed for lightweight semantic segmentation (1.1), 

could yield a smaller, faster model (MALNet-like 

structures) without significant loss of accuracy. 

3. Multi-Modal Data Fusion: A comprehensive 
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system would incorporate data from additional sources. 

Integrating the LRI with aligned RGB data via a multi- 

stream network architecture could allow for the 

simultaneous prediction of PRM (physical wear) and 

retroreflectivity (optical property), providing a complete 

picture of marking condition. 

4. Creation of a Public PRM Benchmark: 

Collaborative work is needed to generate a public dataset 

featuring diverse road marking types, materials, and 

verifiable, physically-measured PRM ground truth. This 

benchmark would standardize evaluation and accelerate 

research in this safety-critical field. 
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