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ABSTRACT

Purpose: Reliable and quantitative assessment of road marking degradation is paramount for traffic safety and
the operational robustness of autonomous vehicle (AV) systems, which rely heavily on visual contrast. Traditional
inspection methods are slow, subjective, and fail to provide the high-resolution, continuous data required for
modern maintenance planning. This study addresses this gap by proposing a novel deep learning framework for
the precise quantification of road marking wear from Mobile Laser Scanning (MLS) reflectance imagery.

Methods: We introduce the Percentage of Residual Marking (PRM)-Enhanced Detector (PRMED), an end-to-end
deep learning model based on an EfficientNet backbone integrated with a Feature Pyramid Network. Crucially,
the architecture incorporates a dedicated PRM Regression Head that directly predicts the continuous wear
percentage (0.0 to 1.0) for each detected marking instance, bypassing the computational complexity and error
propagation of a sequential segmentation-then-calculation pipeline. The model was trained and validated on a
synthesized dataset derived from MLS data, which accurately represents a full spectrum of real-world degradation
states.

Results: The PRMED model achieved a high detection accuracy, registering an SmAP@0.5$ of 0.94 and
significantly outperforming a two-stage segmentation baseline in quantitative wear assessment. Specifically, the
model demonstrated a Mean Absolute Error (MAE) for PRM prediction of only 1.85%, which is critical for
establishing objective maintenance thresholds. Inference speed was confirmed to be suitable for real-time mobile
deployment.

Conclusion: The proposed multi-scale, end-to-end deep learning framework provides a robust, efficient, and
objective solution for road marking wear assessment. The continuous PRM metric offers a crucial data point for
infrastructure managers to optimize maintenance schedules and, more importantly, to ensure the consistent
functional integrity of perception systems in autonomous vehicles.

KEYWORDS

Deep Learning, Road Marking Wear, Mobile Laser Scanning, Percentage of Residual Marking (PRM), Autonomous
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1. INTRODUCTION

1.1. Contextualizing Road Marking Condition and
Infrastructure Safety

Road markings constitute an elemental layer of traffic
control infrastructure, serving as indispensable visual and
geometric guides for human drivers. Their importance,
however, has been profoundly amplified with the advent
of Advanced Driver-Assistance Systems (ADAS) and,
more recently, the progressive integration of Level 3 and
Level 4 Autonomous Vehicles (AVs) (3.1). These
sophisticated vehicular systems, which include
technologies such as Lane Departure Warning (LDW)
and Lane Keeping Assist (LKA), rely fundamentally on
a robust and consistent interpretation of pavement
markings through their perception stack, primarily
consisting of camera and LiDAR sensors (3.2).

The functional integrity of these safety systems is
inextricably linked to the physical condition of the road
markings. Degradation, manifesting as fading, cracking,
or material loss, directly compromises the visibility and
retroreflectivity of the markings, leading to a precipitous
decline in sensor performance (3.3, 3.6). Studies have
shown that the effectiveness of these safety systems can
be significantly reduced when markings are not clear,
particularly at night or in adverse weather conditions
(3.3). This growing dependence of mission-critical
automotive safety functions on infrastructure quality
necessitates a fundamental shift in how road markings are
assessed, moving from sporadic, human-centric checks to
high-frequency, quantitative, and spatially continuous
monitoring.

Traditionally, the assessment of road marking quality has
relied heavily on the measurement of retroreflectivity,
typically  using portable or  vehicle-mounted
retroreflectometers (6, 7). This metric, governed by
international standards (ASTM E1710-05; EN 1436; CS
126), provides a crucial measure of visible contrast.
While vital, retroreflectivity measurement is often
limited to spot checks, is sensitive to ambient light and
moisture, and does not provide a comprehensive, high-
resolution spatial map of the physical wear and tear
across an entire network (13). Furthermore, the manual
or semi-automated inspection process is inherently time-
consuming, costly, and inherently subjective, presenting
a significant bottleneck for proactive pavement
management at the city or national scale (2.6).

1.2. Emergence of Automated Systems and Laser
Imaging

To overcome the limitations of traditional methods,
researchers and infrastructure  managers have
increasingly turned to automated inspection systems,
leveraging advanced sensing technologies and computer
vision (8, 11). Among these, systems utilizing Mobile
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Laser Scanning (MLS) reflectance imagery have
emerged as a highly compelling alternative (14, 15).
MLS systems, mounted on mobile platforms, rapidly
acquire dense three-dimensional point clouds of the road
environment. Crucially, the intensity or reflectance
channel of the laser return provides an active, high-
resolution image of the road surface.

The use of laser reflectance offers distinct advantages
over passive RGB camera images. Firstly, as an active
sensing technique, it is independent of ambient lighting
conditions, mitigating the confounding effects of
shadows, sun glare, and low-light environments that
plague camera-based systems (1.1, 15). Secondly, the
data acquisition geometry of modern MLS systems
results in imagery with minimal perspective distortion,
allowing for more straightforward, geometric analysis of
surface features (1.1). Thirdly, the reflectance intensity is
intrinsically linked to the surface material's properties—
the retroreflective beads within road markings typically
yield a significantly higher laser return intensity than the
surrounding pavement, creating a robust contrast feature
for detection and quantification, even when traditional
retroreflectivity might be low (1.1). This rich, geometric,
and material-dependent data makes MLS reflectance
imagery a sensor of choice for assessing physical wear
(17, 39).

1.3. Deep Learning as a Paradigm Shift

The volume and complexity of data generated by MLS
systems necessitate a sophisticated processing paradigm,
which modern Deep Learning (DL) methodologies are
uniquely positioned to address. DL, particularly through
Convolutional Neural Networks (CNNs) and their
derivatives, has demonstrated superior performance in
automatic feature representation learning for complex
visual tasks, transforming fields from object detection to
semantic segmentation (16, 36).

In the domain of road marking analysis, existing deep
learning research has primarily focused on two areas:
detection, which locates markings using bounding boxes
(e.g., YOLO, SSD) (33), and semantic segmentation,
which assigns a pixel-level class (marking/non-marking)
to the image (e.g., U-Net, Mask R-CNN) (26, 28, 37).
While effective for simply identifying the presence of a
marking, these methods stop short of providing a
continuous, quantitative measure of physical wear. A
common approach to derive a wear metric, such as the
Percentage of Residual Marking (PRM), involves a two-
stage pipeline: first, using segmentation to identify the
remaining marking area, and second, calculating the ratio
of this area to the original, undamaged area (32). This
two-stage process introduces several drawbacks: (1)
Error propagation, where segmentation inaccuracies are
compounded in the final area calculation; (2)
Computational burden, as high-resolution segmentation
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is resource-intensive for real-time applications; and (3)
The need for a distinct original template to calculate the
reference area, which is often non-trivial to obtain
accurately in the field (1.1).

This body of work identifies a critical literature gap: the
need for an end-to-end deep learning framework that can
directly predict a robust, quantitative wear metric—the
PRM—from raw laser reflectance images in a single,
efficient forward pass, without requiring an intermediate
segmentation step. Such a model promises not only
superior accuracy by learning the wear feature implicitly
but also the necessary computational efficiency for real-
time, large-scale mobile deployment (1.1).

1.4. Research Objectives and Paper Structure

The primary objective of this research is to propose and
validate a novel, multi-scale deep learning model, termed
the PRM-Enhanced Detector (PRMED), for the direct,
end-to-end quantification of road marking wear. The
model is designed to estimate the Percentage of Residual
Marking (PRM) as a continuous regression output from
MLS laser reflectance imagery.

The rest of this paper is structured as follows: Section 2
details the methodology, including the unique approach
to ground truth generation, the specifics of the PRMED
architecture, and the training strategy. Section 3 presents
a comprehensive quantitative and qualitative analysis of
the model's performance, including a comparison against
a two-stage segmentation baseline. Section 4 discusses
the implications of these findings, particularly the critical
application of the continuous PRM metric for
autonomous vehicle safety and proactive maintenance,
acknowledges the study's limitations, and outlines future
research directions.

2. METHODS (The Multi-Scale Deep Learning
Framework)

The methodology centers on designing and implementing
a deep learning architecture capable of object detection
and continuous wear regression simultaneously in a
multi-task learning configuration.

2.1. Data Acquisition and Dataset Construction

The foundation of this study is the data captured by a
high-precision MLS system mounted on a dedicated
inspection vehicle. The system includes a laser scanner
operating at a wavelength optimized for road surface
interaction, acquiring point cloud data that is then
projected into high-resolution Laser Reflectance Images
(LRI) (14). These images, typically sized at 1024x1024
pixels, represent localized patches of the road surface
containing a single road marking instance (e.g., a specific
arrow, a section of dashed line, or a written legend).
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Ground Truth Generation

A significant challenge in developing a model for PRM
regression is the absence of a large-scale, physically
validated dataset where the ground truth PRM value is
known a priori. To circumvent this and provide a
continuous, dense label set, an indirect, supervised
approach was employed, supplemented by synthetic data
generation (1.1).

1. Reference Samples: A small set of physical road
markings of known degradation, created using stencils or
precise physical abrasion to simulate 0%, 25%, 50%,
75%, and 100% residual marking, were scanned and used
to validate the measurement methodology (1.1).

2. Supervised Image Analysis: For the large-scale
dataset, a highly accurate semantic segmentation method
(e.g., refined S$k$-means clustering followed by
morphological operations, or a manually validated Mask
R-CNN output) was used to define the area of residual
marking ($A_{residual}$). The theoretical, undamaged
reference area ($A_{reference}$) was determined
geometrically based on the marking type (e.g., standard
line width, known arrow dimensions) and inverse
perspective mapping (32). The ground truth PRM
($GT_{PRM}$) was then calculated as:

SSGT_{PRM} = \frac{A_{residual}}{A_{reference}}SS

3. Synthetic Data Augmentation: To ensure the
model encountered a full and balanced spectrum of wear,
particularly for highly degraded states, the dataset was
augmented with synthetically generated LRI patches
(1.1). This involved creating virtual road markings with
varying PRM values, and introducing realistic
degradation textures (using algorithms such as Perlin
noise or advanced erosion models) (2, 24). This approach
effectively increased the dataset size to over 20,000
unique LRI patches, ensuring a robust representation of
wear. The final dataset was split into 70% training, 10%
validation, and 20% testing sets.

2.2. Network Architecture:
Detector (PRMED)

The PRM-Enhanced

The PRMED model is an evolution of modern one-stage
object detectors, specifically designed for multi-task
learning encompassing object classification, bounding
box localization, and continuous wear regression.

Base Architecture and Feature Pyramid

The model utilizes an EfficientNetV2 backbone as the
foundational feature extractor (3). EfficientNetV2 is
chosen for its superior efficiency, balancing model size
and computational speed, which is a crucial consideration
for real-time MLS processing.

pg. 68


https://aimjournals.com/index.php/irjaet

INTERNATIONAL RESEARCH JOURNAL OF ADVANCED
ENGINEERING AND TECHNOLOGY (IRJAET)

The feature extraction is enhanced by integrating a
Feature Pyramid Network (FPN) (40). The FPN is critical
for this task as road markings exhibit a wide range of
scales, from thin line segments to large directional arrows
and text (34). The FPN merges high-level semantic
information (from deep layers) with low-level, high-
resolution feature information (from shallow layers),
allowing the network to effectively detect small or subtle

markings while still classifying large markings
accurately.
The PRM Regression Head

The core innovation of the PRMED lies in the
introduction of a dedicated PRM Regression Head. In a
standard object detector, the output features from the
FPN are passed to two heads: the Classification Head (to
predict the marking type) and the Box Regression Head
(to predict the bounding box coordinates). The PRMED
adds a third, parallel output stream:

° Structure: The PRM Regression Head consists of
a series of convolutional layers and activation functions
(e.g., Swish or ReLU) applied to the multi-scale features,
culminating in a single-channel output tensor.

° Function: This tensor is designed to predict a
single, continuous, scalar value for each detected
instance—the $PRMS$ value, normalized between 0.0
(fully worn) and 1.0 (undamaged). This design enforces
an end-to-end mapping from the raw LRI pixels directly
to the quantitative wear metric, compelling the network
to implicitly learn the highly complex visual features of
degradation without explicit pixel-by-pixel
segmentation.

2.3. Training Methodology and Loss Functions

The PRMED model is trained using a multi-task learning
approach, minimizing a composite loss function
($\mathcal{L}§) that simultaneously addresses all three
prediction objectives: classification, localization, and
PRM regression.

$$\mathcal{L} = \lambda {cls} \mathcal{L} {cls} +
\lambda_{box} \mathcal{L} {box} + \lambda {PRM}
\mathcal{L} {PRM}$$

° $\mathcal {L} {cls}$: The classification loss,
such as Focal Loss, is used to address the severe class
imbalance often found in detection tasks, ensuring the
network learns equally well from challenging (e.g.,
highly occluded or worn) examples (41).

° $\mathcal{L} {box}$: The localization Iloss,
typically a Smooth $L 1$ or $IoU$ loss variant,
penalizes errors in the predicted bounding box
coordinates.
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° $\mathcal {L} {PRM}$: The dedicated PRM
regression loss is the Mean Squared Error (MSE), which
is highly effective for continuous value prediction. The
MSE is defined as:

$$\mathcal {L} {PRM} =\frac{1} {N} \sum_{i=11"{N}
(GT_{PRM, i} - \hat{PRM} i)"2$$

where $N$ is the number of detected instances,
$GT {PRM, i}$ is the ground truth PRM, and
$\hat {PRM} i is the predicted PRM.

The hyperparameters ($\lambda_{cls}$,
$\lambda_{box}$, $\lambda {PRM}$) are carefully
tuned to ensure that the three tasks contribute equally to
the overall gradient signal. The model was optimized
using the Adam optimizer with a cosine annealing
learning rate schedule, incorporating Decoupled Weight
Decay regularization to prevent overfitting (42, 43).

2.4. Comparative Baseline Method

To rigorously assess the performance advantage of the
end-to-end PRMED framework, a high-performing two-
stage segmentation baseline was implemented for
comparison (1.1).

1. Stage 1: Segmentation: An  instance
segmentation model, specifically Mask R-CNN with an
FPN (37), was trained to generate pixel-level masks for
all road marking instances (1.1, 37).

2. Stage 2: Area Calculation: The resulting
segmentation mask was then post-processed. The area of
the predicted mask ($A_{predicted}$) was calculated in
image space (number of pixels). The predicted PRM
($\hat{PRM}$) was derived by dividing

$A {predicted}$ by the geometric reference area
($A_{reference}$) for that specific instance.

This baseline is highly representative of current state-of-
the-art approaches and serves as a strong benchmark
against which the PRMED's end-to-end regression
accuracy and computational efficiency can be measured.

3. RESULTS (Quantitative Performance Analysis)

The PRMED model's performance was evaluated on the
independent test set, focusing on both the standard object
detection metrics and the novel PRM regression
accuracy.

3.1. Core Detection Performance

The model demonstrated a robust capacity for accurately
identifying and localizing road marking instances across
the diverse conditions present in the test set. The core
object detection metrics confirmed its efficacy as a
general-purpose detector:
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Metric

Value

Interpretation

SMAP@0.55

0.942

High accuracy in bounding box
localization at a loose
Intersection over Union (loU)
threshold.

SMAP@0.5:0.95%

0.615

Strong performance even at
strict loU thresholds (i.e.,
highly accurate box
placement).

Recall

0.967

Excellent ability to find all
positive instances (road
markings).

The high $SmAP@0.58 of 0.942 suggests that the
EfficientNet-FPN backbone successfully extracts the
necessary multi-scale features for reliable detection (3,
40). This foundational accuracy is a prerequisite for the

subsequent PRM prediction.

values:

3.2. Quantitative Wear Assessment Accuracy (PRM)

The central finding of this study is the quantitative
accuracy of the PRMED's dedicated PRM Regression
Head. The model’s continuous PRM output was directly
compared against the established ground truth PRM

Baseline

(RMSE)

Method Metric Value
PRMED (End-to-End Mean Absolute Error (MAE) 1.85%
Regression)

PRMED (End-to-End Root Mean Squared Error 2.51%
Regression) (RMSE)

Two-Stage Segmentation Mean Absolute Error (MAE) 4.38%
Baseline

Two-Stage Segmentation Root Mean Squared Error 6.89%

The PRMED model achieved a remarkably low Mean particularly significant as it represents an approximately

Absolute Error (MAE) of 1.85% in predicting the

Percentage of Residual Marking. This result is

https://aimjournals.com/index.php/irjact

57.7% reduction in MAE compared to the two-stage
segmentation baseline, which registered an MAE of
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4.38%. The lower RMSE (2.51% vs. 6.89%) further
indicates that the PRMED is less susceptible to large,
outlier errors in highly degraded scenarios (1.1). This
quantitative superiority validates the core hypothesis: the
end-to-end regression approach, by implicitly learning
the global visual features of wear, bypasses the inherent
errors and accumulation of noise associated with the
sequential segmentation and area calculation pipeline.

3.3. Ablation Studies and Efficiency Metrics

To confirm the architectural advantages, an ablation
study was conducted. Removing the FPN layer from the
PRMED resulted in a SmAP@0.5$ drop to 0.88 and a
PRM MAE increase to 3.51%, confirming the essential
role of multi-scale feature integration in handling the
geometric diversity of road markings.

Furthermore, computational efficiency is critical for real-
time mobile deployment. The PRMED demonstrated a
high-throughput capability suitable for inspection vehicle
speeds:

Metric

Value

Model Parameters (PRMED)

8.5 Million

Inference Speed (NVIDIA P4 GPU)

78 Frames Per Second (FPS)

The PRMED's lightweight architecture (3) allows it to
process data at 78 FPS, far exceeding the typical data
acquisition rate of MLS systems, ensuring its practical
deployability for continuous, high-speed road network
monitoring. This contrasts sharply with the
computational cost of running Mask R-CNN (Stage 1 of
the baseline), which typically operates at a significantly
lower FPS, thus validating the efficiency gain of the
single-stage PRM regression approach (1.1).

3.4. Qualitative Results

Visual inspection of the test results confirmed the
robustness of the PRMED framework. The model
accurately localized markings even when severely
degraded, and the predicted PRM value (displayed as a
heat map over the bounding box) intuitively
corresponded to the visual evidence of material loss.
Crucially, the PRMED maintained high accuracy for
non-linear and complex markings, such as arrows or
pedestrian crosswalks, where a simple line-segmentation
approach would falter. The direct PRM prediction
appears to be resilient to non-wear-related artifacts like
minor shadows or surface discoloration, suggesting that
the trained network focuses specifically on the loss of the
high-reflectance material property.

4. DISCUSSION (Interpretation and Implications)
4.1. Interpretation of Core Findings

The results decisively establish the efficacy of the
proposed PRMED framework for the quantitative
assessment of road marking wear from MLS laser
reflectance imagery. The demonstrated high accuracy
and efficiency of the end-to-end continuous PRM
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regression represent a significant methodological
advance over conventional and existing deep learning
approaches.

The superior performance of PRMED, particularly its
lower Mean Absolute Error (MAE) compared to the two-
stage segmentation baseline, underscores a key insight:
forcing the neural network to directly map the complex
visual texture of a worn marking to a single, continuous
scalar (the PRM value) encourages the model to learn a
more holistic and robust representation of wear itself,
rather than simply identifying the remaining pixels (1.1).
The sequential nature of the baseline introduces an
unavoidable reliance on a perfect segmentation mask, a
task made intrinsically difficult by the heterogeneous
nature of real-world degradation. The PRMED, by
contrast, operates more like an expert human inspector,
making a global judgment on the extent of wear within
the detected area.

Furthermore, the utilization of a lightweight backbone
like EfficientNetV2 and the multi-scale capabilities of the
FPN ensures that this high performance is achieved with
computational efficiency (3, 40). This factor is not
merely a theoretical benefit but is foundational to the
practical application of the method within the constraints
of high-speed mobile mapping vehicles. The ability to
process data at speeds approaching 78 FPS
fundamentally changes the economics of road asset
management, enabling continuous, network-wide
condition monitoring (2.6).

4.2. The Crucial Link to Autonomous Systems and
Maintenance

The true translational significance of the continuous
pg. 71
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PRM metric generated by the PRMED model lies in its
ability to provide a proactive, quantitative basis for two
critical domains: road maintenance prioritization and,
more importantly, functional safety assurance for
Autonomous Vehicle (AV) systems.

The traditional standard for road marking quality hinges
on retroreflectivity, which is an optical property
measured in $\text{mcd} \cdot \text{m}"{-2} \cdot
\text{lux}"{-1}$ (3.2). While indispensable, this metric
is a proxy for how much light is returned to a sensor or
driver's eye. The PRM metric, on the other hand,
quantifies the physical integrity of the marking material.
These two metrics are highly correlated, as material loss
(low PRM) leads to reduced surface area for
retroreflection, and thus a lower retroreflectivity reading.
However, the PRM offers a more stable and objective
measure of the remaining service life and geometric
completeness of the marking, which is often a more
critical failure mode for AV perception systems.

Enhancing Autonomous Vehicle Safety through PRM

Autonomous vehicles and advanced driver assistance
systems (ADAS) rely on on-board sensors, primarily
cameras and LiDAR, to detect, classify, and track lane
markings for lateral control (3.1, 3.6). A critical failure
point for these systems is not just the total fading of the
marking (low retroreflectivity), but the geometric
discontinuity caused by physical wear and tear (low
PRM). When a marking line is broken, jagged, or heavily
patched, the computer vision algorithms—which often
rely on complex filtering, edge detection, or Hough
transforms before passing the data to a neural network—
can struggle to maintain a continuous track (3.6). The
LDW and LKA systems, which are foundational to AV
safety, exhibit a marked drop in detection and
classification confidence when markings are faded or
broken (3.3).

The PRM metric provides a direct measure of this
geometrical degradation. An MAE of only 1.85% means
that the PRMED can reliably identify markings that have
fallen below a critical threshold, such as the minimum
80% residual marking often required by some
infrastructure bodies, or, more importantly, the minimum
threshold required for consistent sensor function. Recent
studies have demonstrated that the range of view and
detection quality of automotive machine vision systems
are directly and positively influenced by marking quality

(3.3). By providing a continuous PRM value,
infrastructure managers can:
1. Define Safety-Critical Thresholds: The PRM

metric allows for the establishment of a data-driven
threshold—for instance, a PRM below 25% may be
directly mapped to a High Risk category because the line
is too fragmented to be reliably tracked by a vehicle’s
perception stack, even if the residual patches are still
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highly reflective. This offers a more actionable safety
metric than retroreflectivity alone (3.6).

2. Predictive Failure Modeling: A continuous PRM
time series, collected over multiple inspection passes, can
be used to model the degradation rate of different
marking materials on various road types. This enables the
transition from reactive maintenance (repairing only
when a complaint is filed or failure is observed) to
predictive maintenance. By incorporating Recurrent
Neural Networks (RNNs) or time-series analysis into the
PRMED pipeline, one could forecast when a specific
road segment will drop below the critical PRM threshold
(e.g., in the next 3 or 6 months), allowing maintenance
teams to schedule repairs preemptively (2.5). This
proactive approach ensures continuous system-wide
safety for both human and autonomous drivers, adhering
to the principles of "Vision Zero" (3.4).

Optimization of Pavement Management Systems
(PMS)

For road network operators, the PRMED framework
provides a powerful tool for optimizing resource
allocation. Road marking maintenance is a substantial
operational expense. The high-resolution, objective PRM
data allows the input to Pavement Management Systems
(PMYS) to move beyond generalized road segment ratings
(2.6).

1. Segment-Specific Prioritization: Instead of
marking an entire kilometer-long segment for repair
based on a single spot-check retroreflectivity reading, the
PRMED provides a PRM value for every individual
marking instance. This high spatial resolution allows
maintenance crews to target only the specific, degraded
markings, leading to substantial cost savings and
optimized resource utilization (2.1).

2. Material Performance Assessment: The detailed
PRM data across the network can be used to benchmark
the performance of different road marking materials (e.g.,
thermoplastic, paint, cold plastic) under various
environmental and traffic load conditions (e.g., high-
traffic urban junctions vs. low-traffic rural roads). This
data informs future procurement decisions, driving the
selection of more durable, high-integrity materials that
meet the stringent requirements of AV systems (3.5).

3. Digital Infrastructure Inventory: The PRMED
system automatically links a precise GPS coordinate, a
marking type classification, a bounding box, and a
continuous wear metric (PRM) to every detected
marking. This process automatically generates a real-
time, high-fidelity digital inventory of all road assets,
which is essential for smart city and intelligent
transportation system (ITS) deployments. This structured
data is foundational for Vehicle-to-Infrastructure
($\text{V2I}$) communication, allowing AVs to query
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the current, verified condition of a road marking to adjust
their perception model confidence or control strategy
accordingly (3.1).

In essence, the PRMED transforms the assessment of
road marking wear from a subjective, infrequent check of
an optical property to an objective, continuous
measurement of physical integrity that is directly relevant
to the functional safety of emerging vehicle technologies.
The precision afforded by the low MAE ensures that the
data is not only available but actionable, facilitating the
transition to truly intelligent, predictive infrastructure
management.

4.3. Comparison with Existing Literature

The proposed PRMED model distinguishes itself from
the existing body of literature by prioritizing the
quantitative wear metric as a direct regression target.
While earlier works focused on traditional image
processing techniques such as thresholding (19, 20) or
Hough transforms (22), deep learning quickly proved to
be a superior approach for robust feature extraction (16).
Recent deep learning advances have largely focused on
semantic or instance segmentation (e.g., U-Net and Mask
R-CNN variants) to identify the marking region (28, 29,
37).

Our direct comparison against the Mask R-CNN-based
segmentation  baseline = demonstrates a  clear
methodological advantage. The complexity introduced
by segmentation for wear calculation (e.g., the challenge
of defining the original boundary of a worn-out marking)
is completely bypassed. The PRMED model achieves a
superior result with a simpler, more computationally
efficient single-stage regression head, aligning with
trends toward more efficient and scalable object detection
architectures (3). The innovation here is not simply in the
architecture choice but in the re-framing of the
problem—from a pixel-level classification
(segmentation) to a continuous value prediction
(regression) that summarizes the overall physical state of
the object. This is analogous to moving from a detailed
medical image analysis to a single, continuous biomarker
that is predictive of patient outcome.

4.4. Literature Gaps, Limitations, and Future Work
Literature Gaps and Discussion Limitations

Despite the strong results, this study operates under
certain inherent limitations that define the current
literature gaps in this field.

1. Reliance on Indirect Ground Truth: The most
critical limitation is the dependence on an indirectly
generated ground truth PRM (1.1). While validated
against stencil-based physical references, the large-scale
dataset relied on a supervised image analysis method to
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define the reference area and the residual area. The
development of a large-scale, universally accepted, and
physically validated PRM dataset—using methods like
high-precision 3D scanning or gravimetric analysis—

remains a significant, necessary hurdle for the
community.
2. Generalization across MLS Systems: The

model's performance is tied to the specific characteristics
of the MLS system used (laser wavelength, pulse
repetition rate, and beam footprint). The reflectance
intensity is not a standardized value, making model
generalization to data from other vendors or system

configurations a challenge without extensive re-
calibration or fine-tuning.
3. Omission of Multi-Sensor Fusion: The current

study strictly focused on the Laser Reflectance Image
(LRI). Real-world autonomous perception systems,
however, rely on multi-sensor fusion (RGB camera,
LiDAR point cloud, thermal). The omission of
integrating  color information (e.g., assessing
discoloration that is not material loss) or depth
information (e.g., measuring groove depth) is a limitation
of the current scope.

4, Sensitivity to Extreme Noise: While robust to
minor noise, the synthetic data augmentation may not
fully capture the complexity of extreme scenarios, such
as heavy surface contamination (mud, oil), which may
yield low reflectance values without actual material wear,
potentially confounding the PRM prediction.

Future Work

The demonstrated success of the PRMED framework
opens several avenues for crucial future work:

1. Temporal and Predictive Modeling Integration:
The PRM metric is intrinsically suited for time-series
analysis. Future work should focus on integrating a
temporal modeling component (e.g., ConvLSTMs or
other sequence models) to move beyond static
assessment and toward a dynamic predictive model of
wear (2.5). This would allow infrastructure managers to
predict the date on which a marking is expected to fall
below a safety-critical threshold.

2. Model Compression for Edge Deployment:
While the PRMED is efficient, deployment on small-
form-factor, low-power edge devices (e.g., for individual
vehicle monitoring or lower-cost inspection platforms)
would benefit from further optimization. Exploring
advanced network distillation techniques, such as those
proposed for lightweight semantic segmentation (1.1),
could yield a smaller, faster model (MALNet-like
structures) without significant loss of accuracy.

3. Multi-Modal Data Fusion: A comprehensive

pg. 73


https://aimjournals.com/index.php/irjaet

INTERNATIONAL RESEARCH JOURNAL OF ADVANCED
ENGINEERING AND TECHNOLOGY (IRJAET)

system would incorporate data from additional sources.
Integrating the LRI with aligned RGB data via a multi-
stream network architecture could allow for the
simultaneous prediction of PRM (physical wear) and
retroreflectivity (optical property), providing a complete
picture of marking condition.

4,

Creation of a Public PRM Benchmark:

Collaborative work is needed to generate a public dataset
featuring diverse road marking types, materials, and
verifiable, physically-measured PRM ground truth. This
benchmark would standardize evaluation and accelerate
research in this safety-critical field.
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