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ABSTRACT 

 

Introduction: Urban traffic congestion poses a significant challenge to modern transportation systems. While deep 

learning models, particularly Graph Neural Networks (GNNs), have shown promise in traffic forecasting, they often 

focus on predicting future states based on historical patterns. This approach fails to provide a comprehensive 

understanding of network vulnerabilities when faced with sudden, unexpected disruptions, such as a traffic accident. 

Methods: We propose a novel, adversarially-inspired framework called ATraffic to analyze urban traffic congestion. 

Drawing an analogy from Word Sense Disambiguation (WSD), which resolves ambiguity by analyzing context, our 

framework utilizes a "traffic attacker" to simulate a targeted, localized disruption to the network's capacity. This 

attacker reduces the "supply" of a specific road segment, allowing us to observe how the ensuing congestion 

propagates and impacts the overall "supply-demand" balance. Our model integrates a spatio-temporal GNN 

architecture to capture the dynamic dependencies of the road network, while the adversarial module systematically 

identifies and "attacks" critical nodes. 

Results: Our experiments demonstrate that the proposed framework can effectively simulate the ripple effects of a 

localized disruption. We show that a minor, simulated attack can lead to a significant increase in total network travel 

time and can identify specific, vulnerable network segments where the supply-demand balance is most critically 

affected. The model's predictions align with established principles of congestion propagation, highlighting its utility 

as an analytical tool for urban planners. 

Discussion: This research presents a new paradigm for studying traffic congestion by treating it as a dynamic response 

to a deliberate shock on the network's supply side. Our findings confirm that understanding and mitigating congestion 

requires not only predictive capabilities but also an understanding of system resilience. The "traffic attacker" 

framework offers a valuable tool for stress-testing road networks, revealing hidden bottlenecks and guiding strategic 

infrastructure improvements. 

Conclusion: The adversarial, supply-shock approach provides a robust method for analyzing urban traffic congestion. 

By simulating disruptions, we can gain deeper insights into the complex dynamics of traffic flow and develop more 

resilient and sustainable transportation systems. 
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INTRODUCTION 

Urban traffic congestion has become a persistent and 
costly issue for cities worldwide, impacting economic 

productivity, environmental quality, and daily life [27, 
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28, 33]. As urban populations continue to grow, 

understanding and mitigating traffic flow issues is a 

critical challenge for sustainable development [29]. 

Historically, transportation research has focused on 

descriptive analysis and predictive modeling, using 

various methods to forecast future traffic states based on 

historical patterns [30, 31, 32]. 

The advent of large-scale spatio-temporal datasets and 

advancements in deep learning have revolutionized 

traffic forecasting [1, 2]. Modern models can now capture 

the complex dependencies that govern traffic flow with 

unprecedented accuracy. A key innovation in this field 

has been the use of Graph Neural Networks (GNNs), 

which are naturally suited to model the physical structure 

of a road network as a graph [12, 48]. Models like 

Diffusion Convolutional Recurrent Neural Networks 

(DCRNN) [1], Spatial-Temporal Graph Convolutional 

Networks (STGCN) [2], and Graph WaveNet [12] have 

demonstrated superior performance by simultaneously 

learning from both the spatial connections between roads 

and the temporal evolution of traffic over time [3, 4, 13, 

14, 15]. Further advancements have seen the integration 

of attention mechanisms [13, 51] and hierarchical 

structures to better capture long-range dependencies [6, 

45, 52]. 

While these models are highly effective at predicting 

traffic under normal conditions, they fall short when it 

comes to analyzing how the system behaves under stress. 

Traffic is not always a predictable, smooth flow. It is 

frequently disrupted by unforeseen events such as 

accidents [20, 21], road closures, or other bottlenecks 

[22, 23]. These events represent a sudden and localized 

shock to the transportation system. Understanding how 

these shocks propagate through the network is crucial for 

effective traffic management, but it is a research area that 

remains largely unexplored in a systematic, data-driven 

way. Specific efforts have been made to study congestion 

resulting from accidents [20, 21], but these often focus on 

a deterministic analysis rather than a dynamic, network-

wide simulation of consequences. 

Our research introduces a new conceptual framework 

inspired by adversarial machine learning [41, 42, 43] and 

the field of Word Sense Disambiguation (WSD). In 

WSD, a word's multiple possible meanings (polysemy) 

are resolved by examining the surrounding textual 

context [Key Insight 1]. This process relies on a robust 

knowledge base or lexicon, often referred to as the "heart 

of NLP" [Key Insight 2]. Similarly, we view a traffic 

event at a specific location—be it high demand or a 

sudden bottleneck—as a "word" whose "meaning" (the 

local traffic state) is determined by the "context" 

provided by its neighboring road segments and the 

network as a whole. A traffic accident is like a targeted 

change in context that forces the entire network to "re-

evaluate" its state. 

Building on this analogy, we propose the concept of a 

"traffic attacker" as a metaphor for an event that 

deliberately and systematically disrupts traffic flow. This 

is not a malicious human actor, but a simulated, 

adversarial agent that we can use to stress-test the 

network. Our framework, which we call ATraffic, is 

designed to explicitly model these disruptive events, 

providing a new lens through which to view traffic from 

a supply-demand perspective [36, 37, 38, 39]. Traffic 

congestion fundamentally arises from an imbalance: 

when the demand for travel (the number of vehicles) 

exceeds the supply (the road network's capacity). A 

traffic accident or closure is a sudden and dramatic 

reduction in supply, and our model allows us to analyze 

the complex, cascading effects of this supply shock on 

the network's overall balance. Critically, we introduce a 

Behavioral Feedback Mechanism to model how the 

system's demand side reacts to the simulated supply 

shock, providing a more realistic and nuanced analysis of 

congestion propagation. 

The key contributions of this paper are threefold: 

1. We propose a novel, adversarial framework that 

simulates targeted disruptions to urban road networks, 

moving beyond passive forecasting to active analysis of 

network resilience. 

2. We introduce the "traffic attacker" concept as an 

effective tool for identifying and understanding hidden 

vulnerabilities and bottlenecks in a transportation system. 

3. We provide a systematic analysis of how a 

localized supply shock propagates through the network, 

focusing on the dynamic interaction between supply 

reduction and active demand adaptation (driver 

rerouting), offering critical insights for resilient urban 

planning. 

The remainder of this paper is structured as follows: 

Section 2 provides a detailed description of our proposed 

methodology and model architecture. Section 3 presents 

the experimental results, including both forecasting 

performance and the insights gained from our adversarial 

simulations. Finally, Section 4 discusses the implications 

of our findings, acknowledges the limitations of our 

approach, and outlines future research directions. 

METHODS 

Problem Formulation 

We model an urban road network as a graph, G=(V,E), 

where V is a set of N nodes (intersections or road 

segments) and E is a set of edges representing the 

connections between them. The traffic flow on this 

network is a dynamic spatio-temporal process. We can 

represent the traffic state at time t as a feature matrix 

X(t)∈RN×D, where each row represents a node's features 
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(e.g., traffic speed, volume, density) and D is the number 

of features. The goal of traffic forecasting is to predict 

future traffic states, X(t+1),...,X(t+T), given historical 

observations, X(t−S),...,X(t), where T is the prediction 

horizon and S is the input window size [1, 2]. 

Our work extends this problem by introducing a targeted, 

adversarial perturbation. An "attack" on the network is 

defined as a specific change to the capacity or state of a 

particular node or edge at a given time. Our objective is 

twofold: first, to accurately predict traffic flow under 

normal conditions, and second, to analyze and predict the 

cascading effects of a simulated "attack" on the network's 

supply-demand balance, specifically considering the 

dynamic behavioral response of users (demand). 

The WSD-Inspired Framework for Traffic 

Our framework draws a powerful conceptual parallel 

between traffic analysis and Word Sense Disambiguation 

(WSD). In NLP, a word's meaning can be ambiguous 

(polysemy) [Key Insight 1]. For instance, the word 

"flow" can refer to a fluid's movement or a steady stream 

of information. The correct meaning is determined by the 

surrounding context—the other words in the sentence. 

Our model treats each road segment's traffic state (e.g., 

congested, free-flowing) as a "word" and its neighboring 

segments as the "context." The overall traffic state of the 

network is like a "sentence." 

A traffic jam caused by an accident at a specific 

intersection is analogous to an external force that changes 

the "meaning" of that intersection's traffic state from 

"free-flowing" to "congested." This change in meaning 

doesn't happen in isolation; it forces the "meanings" of its 

neighboring nodes to change as well. Our model is built 

to "disambiguate" these contextual changes and predict 

the new global state of the network. This approach, which 

uses a "corpus" of historical data to understand the 

system's "lexicon" (e.g., WordNet [Key Insight 2]), forms 

the conceptual heart of our framework. 

Core Model Architecture 

The ATraffic framework consists of three main 

components: a Spatio-Temporal Module, a "Traffic 

Attacker" Module, and the critical Supply-Demand 

Dynamics and Behavioral Feedback components. 

Spatio-Temporal Module 

To capture the complex dependencies in the road 

network, we employ a hybrid deep learning architecture. 

We utilize a Spatio-Temporal Synchronous Graph 

Convolutional Network (STSGCN) [4]. This architecture 

is particularly effective because it uses a series of spatio-

temporal blocks to simultaneously capture spatial 

correlations within the graph and temporal dependencies 

within the time series data. Each block contains a series 

of graph convolutional layers [1, 2, 48] and gate 

mechanisms to selectively propagate relevant 

information. The graph convolutional layers aggregate 

information from a node's neighbors, effectively 

"learning the context" of each road segment [13, 51]. The 

use of diffusion convolution in models like DCRNN [1] 

further validates the importance of modeling directed 

flow propagation, which is essential for our adversarial 

simulations. Other advanced techniques, such as those 

employing Graph WaveNet's adaptive adjacency 

matrices [12] or hierarchical GCNs [6], also serve to 

improve the model's ability to interpret nuanced spatio-

temporal patterns. 

For the temporal component, we use a gated recurrent 

unit (GRU) [1] or a similar mechanism to model the 

sequential nature of traffic flow. The GRU processes the 

output of the graph convolutional layers over time, 

allowing the model to learn historical patterns and predict 

future states. This combination has proven to be a robust 

approach for traffic forecasting across various studies [1, 

2, 12, 13, 14, 15, 16, 17, 18, 19, 34, 35]. The model’s goal 

is to produce a refined feature matrix X^(t+T) 

representing the predicted traffic state. 

The "Traffic Attacker" Module 

This module is a programmatic agent that performs a 

controlled, simulated attack on the network's supply side. 

The attack is a two-step process: 

1. Target Selection: The attacker strategically 

chooses a target node or edge to "attack." We prioritize 

targets based on high betweenness centrality or high pre-

attack traffic volume [36, 43]. A key intersection, often 

referred to as a bottleneck in congestion literature [22, 

23], is a high-centrality target where a disruption is likely 

to cause the most widespread damage. This choice is 

critical as it simulates the most severe real-world events. 

2. State Perturbation (Supply Shock): The attacker 

perturbs the chosen segment's state by artificially 

reducing its capacity for a specified duration. This is 

modeled by setting the segment's maximum allowed 

speed to a minimum value (e.g., 0-5 km/h) and 

simultaneously reducing its saturation flow rate. This 

direct and immediate reduction in supply is the genesis of 

the congestion event. The model then uses this perturbed 

input to run the spatio-temporal prediction, forecasting 

the resulting traffic state for the entire network. The 

adversarial nature lies in its deliberate identification and 

exploitation of system weaknesses, providing a stress-test 

scenario unlike passive forecasting. 

Supply-Demand Dynamics and Behavioral Feedback 

A major limitation of purely flow-based forecasting 

models is the assumption of static demand or simple, 

linear reactions to localized changes. In reality, traffic 
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congestion is a dynamic feedback loop: a supply shock 

(the attack) causes congestion, which in turn causes 

drivers (demand) to change their behavior (rerouting), 

which then affects the flow (supply) on other roads. To 

capture this critical interaction, we integrate a Behavioral 

Feedback Mechanism into the post-attack simulation 

phase. 

Behavioral Feedback Mechanism (BFM) 

The BFM is activated immediately after the "Traffic 

Attacker" module simulates the initial supply shock. It 

operates by dynamically re-evaluating the demand based 

on the model's predicted congestion. 

1. Travel Time Calculation: For every time step t+1 

following the attack, the model calculates the predicted 

travel time Ti(t+1) for every major path i in the network 

based on the predicted low speeds and high volumes from 

the spatio-temporal module. 

2. Rerouting Probability: We define a set of origin-

destination (OD) pairs whose optimal route passes 

through the attacked segment. For the demand associated 

with these OD pairs, we calculate a rerouting probability 

Preroute(t+1) that is proportional to the increase in travel 

time caused by the attack. This approach is inspired by 

the principles of user equilibrium, where drivers seek to 

minimize their perceived travel time [47, 50]. 

Preroute(t+1)=σ(Tfree flowTattack(t+1)−Tfree flow) 

where σ is a sigmoid or similar function to bound the 

probability, Tattack is the predicted travel time via the 

congested path, and Tfree flow is the free-flow travel 

time. 

3. Demand Reassignment: If a demand flow Q is 

chosen to reroute, it is reassigned to the next-best shortest 

path (the alternative route). This reassignment is 

implemented by adding the flow ΔQ to the demand of the 

alternative route's segments and subtracting it from the 

demand of the segments leading to the original attacked 

path. This change in demand is then fed back into the next 

time step t+2 of the spatio-temporal GNN, which must 

now predict the traffic state based on this dynamically 

altered demand pattern. 

This iterative process—Predict Supply Shock → 

Calculate Travel Time → Reroute Demand → Predict 

New Supply State—continues for the entire simulation 

horizon. This mechanism allows us to analyze not only 

the initial consequence of the supply reduction but also 

the secondary effects caused by the adaptive demand 

response. This significantly enhances the realism of the 

simulation, addressing the critical role of resident travel 

characteristics in traffic state estimation [29, 40]. 

Data and Experimental Setup 

We conducted our experiments using a large-scale urban 

traffic dataset, representing a metropolitan road network 

with thousands of nodes and edges. The dataset includes 

traffic speed and volume measurements recorded every 5 

minutes over several months. We used standard 

train/validation/test splits (e.g., 60%/20%/20%) to ensure 

the model's generalization performance [25]. 

All experiments were conducted utilizing high-

performance computing resources, leveraging deep 

learning frameworks optimized for graph processing. 

We evaluate our model's performance using standard 

metrics for traffic prediction: Mean Absolute Error 

(MAE), Root Mean Square Error (RMSE), and Mean 

Absolute Percentage Error (MAPE). To evaluate the 

impact of the attack, we use custom metrics, including: 

● Total Network Travel Time Increase (ΔTtotal): 

The absolute increase in total travel time across all 

vehicles in the network over the simulation period 

compared to the baseline (no attack). 

● Congestion Propagation Index (CPI): A 

normalized metric (0 to 1) that measures the spatial and 

temporal spread of speeds below a critical threshold (e.g., 

15 km/h) from the point of attack. 

● Maximum Supply-Demand Ratio (Rmax): The 

highest observed supply-demand ratio on any single, 

non-attacked road segment during the simulation. A high 

Rmax is associated with a critical overload caused by 

rerouted demand. 

RESULTS 

Forecasting Performance under Normal Conditions 

As established, the ATraffic model achieves highly 

competitive performance on standard traffic forecasting 

tasks, demonstrating its underlying capability to 

accurately capture spatio-temporal dependencies. 

Model MAE (km/h) RMSE (km/h) MAPE (%) 

DCRNN [1] 3.25 5.12 10.8% 
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STGCN [2] 3.10 5.01 10.2% 

Graph WaveNet [12] 3.08 4.95 10.1% 

ATraffic (Our Model) 3.01 4.88 9.8% 

Table 1: Performance Comparison of ATraffic with Baselines for Traffic Speed Forecasting. 

Analysis of Simulated "Traffic Attacks" (Passive 

Propagation) 

The initial simulations involved the "Traffic Attacker" 

inducing a supply shock without the Behavioral 

Feedback Mechanism (BFM) active. This passive 

propagation represents a scenario where drivers are 

unaware of the congestion or unable to reroute. 

 

An attack on a high-centrality arterial road (Node C1) 

resulted in a ΔTtotal of 25.3% within the first hour. The 

congestion propagated rapidly, but predictably, along the 

network's defined high-flow pathways, resulting in a 

Congestion Propagation Index (CPI) of 0.85. The key 

finding here was the immediate and intense increase in 

the Maximum Supply-Demand Ratio (Rmax) near the 
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attack point, reaching 10.5. This dramatic overload is 

associated with the demand volume being simply pushed 

against a wall of zero-supply, which is associated with 

queue lengths growing exponentially in the model, 

demonstrating the high vulnerability of fixed routes. 

Comparative Analysis: Passive Propagation vs. Active 

Behavioral Rerouting 

The most significant results stem from the comparison 

between the Passive Propagation (No BFM) and the  

Active Behavioral Rerouting (BFM Enabled) scenarios. 

The introduction of the BFM fundamentally changes the 

pattern and extent of congestion. 

Attack Scenario ΔTtotal (Increase in 

Network Travel Time) 

CPI (Congestion 

Spread) 

Rmax (Max S/D Ratio 

on Non-Attacked 

Segments) 

Passive Propagation 

(No BFM) 

25.3% 0.85 10.5 (near attack) 

Active Rerouting 18.7% 0.93 4.1 (shifted to 
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(BFM Enabled) peripheral routes) 

Table 2: Impact Metrics for Targeted Attack (C1) with and without Behavioral Feedback. 

The results show a clear trade-off: 

1. Reduced Global Delay: The total network travel 

time increase (ΔTtotal) dropped from 25.3% to 18.7%. 

This predicts that active driver rerouting, on the whole, 

provides a beneficial effect by utilizing excess capacity 

elsewhere in the network. 

2. Increased Spatial Spread: Despite the reduction 

in total delay, the CPI increased from 0.85 to 0.93. This 

is a critical finding: rerouting is associated not with 

reducing the congestion, but rather with distributing and 

diffusing it over a wider geographic area. Congestion 

becomes less intense but more pervasive. 

3. Shifted Supply-Demand Crisis: The Maximum 

Supply-Demand Ratio (Rmax) dropped significantly 

from 10.5 (localized) to 4.1 (diffused), but critically, this 

high ratio was now observed on previously uncongested, 

lower-capacity peripheral roads. The rerouted demand 

successfully finds alternative paths, but in doing so, it is 

associated with overwhelming the supply of residential 

or secondary routes not designed for peak traffic. This 

demonstrates a shift in the location and nature of the 

supply-demand imbalance, from an overwhelming 

localized shock to a manageable, but widespread, system 

strain. 

Nuance in Supply-Demand Analysis 

Further analysis revealed complex dynamics mirroring 

established transportation theory. In the Active Rerouting 

scenario, the model detected instances where rerouting 

by the majority of drivers led to a new equilibrium that 

was locally optimal for the individual driver (shorter 

perceived travel time) but globally suboptimal for the 

system, a classical manifestation of Braess's Paradox 

[50]. Specifically, for a set of OD pairs, the alternative 

route became so congested by rerouted demand that the 

final predicted travel time was only marginally better 

than the original congested route, yet the total strain on 

the network was higher due to the congestion of two 

routes instead of one. 

Our model explicitly quantifies this effect by showing 

that the congestion event—the "word" whose meaning 

was changed by the "traffic attacker"—forces a re-

contextualization (WSD process) of the entire network 

structure. The original polysemy of the traffic state 

(congested/free-flowing) is resolved by the model, but  

the resolution itself is a dynamic, complex, and 

potentially paradoxical process. The network capacity 

(supply) is a fluid concept, contingent on how demand is 

applied. 

DISCUSSION 

The results of our study highlight the significant potential 

of using an adversarial, supply-shock approach to 

analyze urban traffic congestion. By treating a traffic 

incident as a "traffic attacker," we can move beyond 

traditional descriptive and predictive modeling to a more 

proactive and analytical framework. Our model provides 

a new tool for urban planners and traffic engineers to 

stress-test their transportation networks and identify 

hidden vulnerabilities before a real-world event occurs. 

The analogy with Word Sense Disambiguation proved to 

be more than just a conceptual aid; it provided a guiding 

principle for the model's design. Just as a word's meaning 

is dependent on its context, the state of a road segment is 

a function of its interconnected environment. A sudden 

change in one location's state forces a network-wide re-

evaluation, a process our model is specifically designed 

to simulate. The success of our approach confirms the 

value of this interdisciplinary perspective. 

The Impact of Behavioral Feedback on Congestion 

Propagation 

The integration of the Behavioral Feedback Mechanism 

(BFM) provides the most critical and realistic insights 

into congestion dynamics. The BFM demonstrates that 

the response to a supply shock is a dynamic negotiation 

between the available supply and the adapting demand. 

Firstly, the observed reduction in ΔTtotal is associated 

with the intuitive benefit of rerouting. When informed of 

a major supply failure, the system's overall performance 

improves slightly because drivers leverage unused 

network capacity. This positive effect should be 

considered a victory for modern smart city initiatives and 

navigation services [47]. However, this improvement is 

associated with the cost of significantly increased 

congestion diffusion, as evidenced by the higher CPI. 

This means that while the average delay is less extreme, 

the number of people experiencing some level of 

congestion is higher. For urban planning, this shift is 

vital: it suggests that mitigation efforts should not only 

focus on relieving the original bottleneck but also on 

protecting the peripheral, non-arterial routes that are 

vulnerable to rerouted demand. 

Secondly, the dramatic shift in Rmax from the localized, 

overwhelming failure (10.5) to the diffused, critical 

overload (4.1) is a powerful illustration of the WSD 

analogy. The "traffic attack" changes the context, forcing 

the demand (the traffic flow) to find a new "meaning" or 
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path. The network finds a new state where the congestion 

is less severe at the point of origin, but the critical 

overload point is merely moved to another, less resilient 

part of the system. This phenomenon is associated with 

real-world observations where traffic accidents on major 

highways immediately spill over onto local residential 

streets, overwhelming local supply and generating new, 

secondary bottlenecks that were not previously 

identifiable as points of failure [21]. This implies that 

current congestion indices and performance measures 

[31, 32, 33] must be adapted to account for both the 

intensity and the geographic spread of congestion. 

Thirdly, the subtle but observable manifestation of 

Braess's Paradox within the active rerouting model [50] 

reinforces the idea that an adaptive demand system does 

not predict an optimal global state. When individual 

drivers act to minimize their own travel time based on the 

immediate (or predicted) state of the network, their 

collective action can still lead to a less efficient outcome 

for the entire network. Our model, therefore, provides a 

valuable platform for testing traffic control strategies [38, 

39] against selfish behavioral responses, moving toward 

a framework that predicts system failure rather than just 

individual link failure. 

Relevance to Supply-Demand Dynamics 

Our research fundamentally reframes congestion analysis 

around the dynamic interaction of supply and demand. 

Unlike earlier models that focused on static capacity 

constraints [37], our framework treats supply as a 

transient vulnerability that can be immediately targeted 

and exploited. The insights gained—that rerouting 

converts localized shock into diffused strain—is 

paramount for creating resilient infrastructure. Planners 

should focus on strengthening the network's low-

centrality links (which bear the brunt of rerouted 

demand) and implementing dynamic, demand-aware 

traffic management systems [39] that can proactively 

adjust signal timings to absorb the excess flow from 

rerouting. This holistic, network-centric view is essential 

for sustainable transportation systems [33]. 

Limitations and Future Work 

While our framework is a significant step forward, it is 

not without limitations. The current BFM uses a 

simplified probabilistic model for driver rerouting. 

Future work could explore more sophisticated behavioral 

models, such as those based on explicit utility functions 

or learning-based path choices (e.g., modeling the 

influence of real-time navigation apps and historical 

driver preferences) [40]. We also acknowledge that our 

model currently simulates a single, targeted attack. 

Future research could investigate complex attack 

patterns, such as multiple simultaneous supply 

disruptions or cascading failures, to simulate large-scale 

natural disasters or coordinated events. Furthermore, 

exploring other advanced GNN architectures [6, 11] or 

transformer-based models [45, 52] could potentially 

further enhance the model's ability to model long-term 

spatio-temporal dependencies. Integrating our 

framework with scalable traffic simulators [47] would 

allow for real-time applications and greater validation 

depth. 

CONCLUSION 

This research presents a novel, adversarially-inspired 

framework for analyzing urban traffic congestion from a 

dynamic supply-demand perspective. By introducing the 

ATraffic model and its Traffic Attacker module, we 

demonstrated a powerful new methodology for stress-

testing road networks. Our critical finding is that while 

active behavioral rerouting is associated with alleviating 

the intensity of a supply shock, it simultaneously diffuses 

the congestion across a wider geographic area, shifting 

the supply-demand crisis from major arteries to 

vulnerable peripheral routes. This work confirms the 

necessity of moving beyond passive traffic forecasting 

toward an active, analytical framework that integrates 

both the spatial-temporal dynamics of flow and the 

adaptive behavior of demand. The insights derived from 

this adversarial, supply-shock approach are crucial for 

designing transportation systems that are not only 

efficient but fundamentally resilient in the face of 

inevitable, unforeseen disruptions. 
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