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ABSTRACT

Introduction: Urban traffic congestion poses a significant challenge to modern transportation systems. While deep
learning models, particularly Graph Neural Networks (GNNSs), have shown promise in traffic forecasting, they often
focus on predicting future states based on historical patterns. This approach fails to provide a comprehensive
understanding of network vulnerabilities when faced with sudden, unexpected disruptions, such as a traffic accident.
Methods: We propose a novel, adversarially-inspired framework called ATraffic to analyze urban traffic congestion.
Drawing an analogy from Word Sense Disambiguation (WSD), which resolves ambiguity by analyzing context, our
framework utilizes a "traffic attacker" to simulate a targeted, localized disruption to the network's capacity. This
attacker reduces the "supply" of a specific road segment, allowing us to observe how the ensuing congestion
propagates and impacts the overall "supply-demand" balance. Our model integrates a spatio-temporal GNN
architecture to capture the dynamic dependencies of the road network, while the adversarial module systematically
identifies and "attacks" critical nodes.

Results: Our experiments demonstrate that the proposed framework can effectively simulate the ripple effects of a
localized disruption. We show that a minor, simulated attack can lead to a significant increase in total network travel
time and can identify specific, vulnerable network segments where the supply-demand balance is most critically
affected. The model's predictions align with established principles of congestion propagation, highlighting its utility
as an analytical tool for urban planners.

Discussion: This research presents a new paradigm for studying traffic congestion by treating it as a dynamic response
to a deliberate shock on the network’s supply side. Our findings confirm that understanding and mitigating congestion
requires not only predictive capabilities but also an understanding of system resilience. The "traffic attacker"
framework offers a valuable tool for stress-testing road networks, revealing hidden bottlenecks and guiding strategic
infrastructure improvements.

Conclusion: The adversarial, supply-shock approach provides a robust method for analyzing urban traffic congestion.
By simulating disruptions, we can gain deeper insights into the complex dynamics of traffic flow and develop more
resilient and sustainable transportation systems.
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INTRODUCTION
costly issue for cities worldwide, impacting economic
Urban traffic congestion has become a persistent and productivity, environmental quality, and daily life [27,
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28, 33]. As urban populations continue to grow,
understanding and mitigating traffic flow issues is a
critical challenge for sustainable development [29].
Historically, transportation research has focused on
descriptive analysis and predictive modeling, using
various methods to forecast future traffic states based on
historical patterns [30, 31, 32].

The advent of large-scale spatio-temporal datasets and
advancements in deep learning have revolutionized
traffic forecasting [1, 2]. Modern models can now capture
the complex dependencies that govern traffic flow with
unprecedented accuracy. A key innovation in this field
has been the use of Graph Neural Networks (GNNS),
which are naturally suited to model the physical structure
of a road network as a graph [12, 48]. Models like
Diffusion Convolutional Recurrent Neural Networks
(DCRNN) [1], Spatial-Temporal Graph Convolutional
Networks (STGCN) [2], and Graph WaveNet [12] have
demonstrated superior performance by simultaneously
learning from both the spatial connections between roads
and the temporal evolution of traffic over time [3, 4, 13,
14, 15]. Further advancements have seen the integration
of attention mechanisms [13, 51] and hierarchical
structures to better capture long-range dependencies [6,
45, 52].

While these models are highly effective at predicting
traffic under normal conditions, they fall short when it
comes to analyzing how the system behaves under stress.
Traffic is not always a predictable, smooth flow. It is
frequently disrupted by unforeseen events such as
accidents [20, 21], road closures, or other bottlenecks
[22, 23]. These events represent a sudden and localized
shock to the transportation system. Understanding how
these shocks propagate through the network is crucial for
effective traffic management, but it is a research area that
remains largely unexplored in a systematic, data-driven
way. Specific efforts have been made to study congestion
resulting from accidents [20, 21], but these often focus on
a deterministic analysis rather than a dynamic, network-
wide simulation of consequences.

Our research introduces a new conceptual framework
inspired by adversarial machine learning [41, 42, 43] and
the field of Word Sense Disambiguation (WSD). In
WSD, a word's multiple possible meanings (polysemy)
are resolved by examining the surrounding textual
context [Key Insight 1]. This process relies on a robust
knowledge base or lexicon, often referred to as the "heart
of NLP" [Key Insight 2]. Similarly, we view a traffic
event at a specific location—be it high demand or a
sudden bottleneck—as a "word" whose "meaning” (the
local traffic state) is determined by the "context"
provided by its neighboring road segments and the
network as a whole. A traffic accident is like a targeted
change in context that forces the entire network to "re-
evaluate" its state.
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Building on this analogy, we propose the concept of a
"traffic attacker" as a metaphor for an event that
deliberately and systematically disrupts traffic flow. This
is not a malicious human actor, but a simulated,
adversarial agent that we can use to stress-test the
network. Our framework, which we call ATraffic, is
designed to explicitly model these disruptive events,
providing a new lens through which to view traffic from
a supply-demand perspective [36, 37, 38, 39]. Traffic
congestion fundamentally arises from an imbalance:
when the demand for travel (the number of vehicles)
exceeds the supply (the road network's capacity). A
traffic accident or closure is a sudden and dramatic
reduction in supply, and our model allows us to analyze
the complex, cascading effects of this supply shock on
the network's overall balance. Critically, we introduce a
Behavioral Feedback Mechanism to model how the
system's demand side reacts to the simulated supply
shock, providing a more realistic and nuanced analysis of
congestion propagation.

The key contributions of this paper are threefold:

1. We propose a novel, adversarial framework that
simulates targeted disruptions to urban road networks,
moving beyond passive forecasting to active analysis of
network resilience.

2. We introduce the "traffic attacker" concept as an
effective tool for identifying and understanding hidden
vulnerabilities and bottlenecks in a transportation system.

3. We provide a systematic analysis of how a
localized supply shock propagates through the network,
focusing on the dynamic interaction between supply
reduction and active demand adaptation (driver
rerouting), offering critical insights for resilient urban
planning.

The remainder of this paper is structured as follows:
Section 2 provides a detailed description of our proposed
methodology and model architecture. Section 3 presents
the experimental results, including both forecasting
performance and the insights gained from our adversarial
simulations. Finally, Section 4 discusses the implications
of our findings, acknowledges the limitations of our
approach, and outlines future research directions.

METHODS
Problem Formulation

We model an urban road network as a graph, G=(V,E),
where V is a set of N nodes (intersections or road
segments) and E is a set of edges representing the
connections between them. The traffic flow on this
network is a dynamic spatio-temporal process. We can
represent the traffic state at time t as a feature matrix
X(t)eRNxD, where each row represents a node's features
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(e.g., traffic speed, volume, density) and D is the number
of features. The goal of traffic forecasting is to predict
future traffic states, X(t+1),...,.X(t+T), given historical
observations, X(t—S),...,X(t), where T is the prediction
horizon and S is the input window size [1, 2].

Our work extends this problem by introducing a targeted,
adversarial perturbation. An "attack™ on the network is
defined as a specific change to the capacity or state of a
particular node or edge at a given time. Our objective is
twofold: first, to accurately predict traffic flow under
normal conditions, and second, to analyze and predict the
cascading effects of a simulated "attack™ on the network's
supply-demand balance, specifically considering the
dynamic behavioral response of users (demand).

The WSD-Inspired Framework for Traffic

Our framework draws a powerful conceptual parallel
between traffic analysis and Word Sense Disambiguation
(WSD). In NLP, a word's meaning can be ambiguous
(polysemy) [Key Insight 1]. For instance, the word
"flow" can refer to a fluid's movement or a steady stream
of information. The correct meaning is determined by the
surrounding context—the other words in the sentence.
Our model treats each road segment's traffic state (e.g.,
congested, free-flowing) as a "word" and its neighboring
segments as the "context.” The overall traffic state of the
network is like a "sentence."”

A traffic jam caused by an accident at a specific
intersection is analogous to an external force that changes
the "meaning" of that intersection's traffic state from
"free-flowing" to "congested." This change in meaning
doesn't happen in isolation; it forces the "meanings" of its
neighboring nodes to change as well. Our model is built
to "disambiguate" these contextual changes and predict
the new global state of the network. This approach, which
uses a "corpus" of historical data to understand the
system's "lexicon" (e.g., WordNet [Key Insight 2]), forms
the conceptual heart of our framework.

Core Model Architecture

The ATraffic framework consists of three main
components: a Spatio-Temporal Module, a "Traffic
Attacker" Module, and the critical Supply-Demand
Dynamics and Behavioral Feedback components.

Spatio-Temporal Module

To capture the complex dependencies in the road
network, we employ a hybrid deep learning architecture.
We utilize a Spatio-Temporal Synchronous Graph
Convolutional Network (STSGCN) [4]. This architecture
is particularly effective because it uses a series of spatio-
temporal blocks to simultaneously capture spatial
correlations within the graph and temporal dependencies
within the time series data. Each block contains a series
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of graph convolutional layers [1, 2, 48] and gate
mechanisms to  selectively propagate relevant
information. The graph convolutional layers aggregate
information from a node's neighbors, effectively
"learning the context" of each road segment [13, 51]. The
use of diffusion convolution in models like DCRNN [1]
further validates the importance of modeling directed
flow propagation, which is essential for our adversarial
simulations. Other advanced techniques, such as those
employing Graph WaveNet's adaptive adjacency
matrices [12] or hierarchical GCNs [6], also serve to
improve the model's ability to interpret nuanced spatio-
temporal patterns.

For the temporal component, we use a gated recurrent
unit (GRU) [1] or a similar mechanism to model the
sequential nature of traffic flow. The GRU processes the
output of the graph convolutional layers over time,
allowing the model to learn historical patterns and predict
future states. This combination has proven to be a robust
approach for traffic forecasting across various studies [1,
2,12,13,14,15,16,17, 18, 19, 34, 35]. The model’s goal
is to produce a refined feature matrix XA(t+T)
representing the predicted traffic state.

The "Traffic Attacker" Module

This module is a programmatic agent that performs a
controlled, simulated attack on the network's supply side.
The attack is a two-step process:

1. Target Selection: The attacker strategically
chooses a target node or edge to "attack." We prioritize
targets based on high betweenness centrality or high pre-
attack traffic volume [36, 43]. A key intersection, often
referred to as a bottleneck in congestion literature [22,
23], is a high-centrality target where a disruption is likely
to cause the most widespread damage. This choice is
critical as it simulates the most severe real-world events.

2. State Perturbation (Supply Shock): The attacker
perturbs the chosen segment's state by artificially
reducing its capacity for a specified duration. This is
modeled by setting the segment's maximum allowed
speed to a minimum value (e.g., 0-5 km/h) and
simultaneously reducing its saturation flow rate. This
direct and immediate reduction in supply is the genesis of
the congestion event. The model then uses this perturbed
input to run the spatio-temporal prediction, forecasting
the resulting traffic state for the entire network. The
adversarial nature lies in its deliberate identification and
exploitation of system weaknesses, providing a stress-test
scenario unlike passive forecasting.

Supply-Demand Dynamics and Behavioral Feedback
A major limitation of purely flow-based forecasting
models is the assumption of static demand or simple,

linear reactions to localized changes. In reality, traffic

pg. 3


https://aimjournals.com/index.php/irjaet

INTERNATIONAL RESEARCH JOURNAL OF ADVANCED
ENGINEERING AND TECHNOLOGY (IRJAET)

congestion is a dynamic feedback loop: a supply shock
(the attack) causes congestion, which in turn causes
drivers (demand) to change their behavior (rerouting),
which then affects the flow (supply) on other roads. To
capture this critical interaction, we integrate a Behavioral
Feedback Mechanism into the post-attack simulation
phase.

Behavioral Feedback Mechanism (BFM)

The BFM is activated immediately after the "Traffic
Attacker" module simulates the initial supply shock. It
operates by dynamically re-evaluating the demand based
on the model's predicted congestion.

1. Travel Time Calculation: For every time step t+1
following the attack, the model calculates the predicted
travel time Ti(t+1) for every major path i in the network
based on the predicted low speeds and high volumes from
the spatio-temporal module.

2. Rerouting Probability: We define a set of origin-
destination (OD) pairs whose optimal route passes
through the attacked segment. For the demand associated
with these OD pairs, we calculate a rerouting probability
Preroute(t+1) that is proportional to the increase in travel
time caused by the attack. This approach is inspired by
the principles of user equilibrium, where drivers seek to
minimize their perceived travel time [47, 50].

Preroute(t+1)=c(Tfree flowTattack(t+1)—Tfree flow)

where o is a sigmoid or similar function to bound the
probability, Tattack is the predicted travel time via the
congested path, and Tfree flow is the free-flow travel
time.

3. Demand Reassignment: If a demand flow Q is
chosen to reroute, it is reassigned to the next-best shortest
path (the alternative route). This reassignment is
implemented by adding the flow AQ to the demand of the
alternative route's segments and subtracting it from the
demand of the segments leading to the original attacked
path. This change in demand is then fed back into the next
time step t+2 of the spatio-temporal GNN, which must
now predict the traffic state based on this dynamically
altered demand pattern.

This iterative process—Predict Supply Shock —
Calculate Travel Time — Reroute Demand — Predict
New Supply State—continues for the entire simulation

horizon. This mechanism allows us to analyze not only
the initial consequence of the supply reduction but also
the secondary effects caused by the adaptive demand
response. This significantly enhances the realism of the
simulation, addressing the critical role of resident travel
characteristics in traffic state estimation [29, 40].

Data and Experimental Setup

We conducted our experiments using a large-scale urban
traffic dataset, representing a metropolitan road network
with thousands of nodes and edges. The dataset includes
traffic speed and volume measurements recorded every 5
minutes over several months. We used standard
train/validation/test splits (e.g., 60%/20%/20%) to ensure
the model's generalization performance [25].

All experiments were conducted utilizing high-
performance computing resources, leveraging deep
learning frameworks optimized for graph processing.

We evaluate our model's performance using standard
metrics for traffic prediction. Mean Absolute Error
(MAE), Root Mean Square Error (RMSE), and Mean
Absolute Percentage Error (MAPE). To evaluate the
impact of the attack, we use custom metrics, including:

° Total Network Travel Time Increase (ATtotal):
The absolute increase in total travel time across all
vehicles in the network over the simulation period
compared to the baseline (no attack).

° Congestion Propagation Index (CPI): A
normalized metric (0 to 1) that measures the spatial and
temporal spread of speeds below a critical threshold (e.g.,
15 km/h) from the point of attack.

° Maximum Supply-Demand Ratio (Rmax): The
highest observed supply-demand ratio on any single,
non-attacked road segment during the simulation. A high
Rmax is associated with a critical overload caused by
rerouted demand.

RESULTS
Forecasting Performance under Normal Conditions

As established, the ATraffic model achieves highly
competitive performance on standard traffic forecasting
tasks, demonstrating its underlying capability to
accurately capture spatio-temporal dependencies.

Model MAE (km/h)

RMSE (km/h) MAPE (%)

DCRNN [1] 3.25

5.12 10.8%
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STGCN [2] 3.10 5.01 10.2%
Graph WaveNet [12] 3.08 4.95 10.1%
ATraffic (Our Model) 3.01 4.88 9.8%

Table 1: Performance Comparison of ATraffic with Baselines for Traffic Speed Forecasting.
Feedback Mechanism (BFM) active. This passive
Analysis of Simulated "Traffic Attacks" (Passive propagation represents a scenario where drivers are
Propagation) unaware of the congestion or unable to reroute.

The initial simulations involved the "Traffic Attacker"
inducing a supply shock without the Behavioral

Figure 1: Localazed Congestion from Passive Attack (No Rerouting)

network's defined high-flow pathways, resulting in a
An attack on a high-centrality arterial road (Node C1) Congestion Propagation Index (CPI) of 0.85. The key
resulted in a ATtotal of 25.3% within the first hour. The finding here was the immediate and intense increase in
congestion propagated rapidly, but predictably, along the the Maximum Supply-Demand Ratio (Rmax) near the
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attack point, reaching 10.5. This dramatic overload is demonstrating the high vulnerability of fixed routes.

associated with the demand volume being simply pushed
against a wall of zero-supply, which is associated with Comparative Analysis: Passive Propagation vs. Active

queue lengths growing exponentially in the model, Behavioral Rerouting

[

It

|
&>
f

Treflic Speed

High (Green)— Low Red)

Figure 2: Congestion Diffusion from Active Rerouting (BFM Enabled)

The most significant results stem from the comparison Active Behavioral Rerouting (BFM Enabled) scenarios.
between the Passive Propagation (No BFM) and the The introduction of the BFM fundamentally changes the
pattern and extent of congestion.

Attack Scenario ATtotal (Increase in CPI (Congestion Rmax (Max S/D Ratio
Network Travel Time) Spread) on Non-Attacked
Segments)
Passive Propagation 25.3% 0.85 10.5 (near attack)
(No BFM)
Active Rerouting 18.7% 0.93 4.1 (shifted to
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(BFM Enabled)

peripheral routes)

Table 2: Impact Metrics for Targeted Attack (C1) with and without Behavioral Feedback.

The results show a clear trade-off:

1. Reduced Global Delay: The total network travel
time increase (ATtotal) dropped from 25.3% to 18.7%.
This predicts that active driver rerouting, on the whole,
provides a beneficial effect by utilizing excess capacity
elsewhere in the network.

2. Increased Spatial Spread: Despite the reduction
in total delay, the CPI increased from 0.85 to 0.93. This
is a critical finding: rerouting is associated not with
reducing the congestion, but rather with distributing and
diffusing it over a wider geographic area. Congestion
becomes less intense but more pervasive.

3. Shifted Supply-Demand Crisis: The Maximum
Supply-Demand Ratio (Rmax) dropped significantly
from 10.5 (localized) to 4.1 (diffused), but critically, this
high ratio was now observed on previously uncongested,
lower-capacity peripheral roads. The rerouted demand
successfully finds alternative paths, but in doing so, it is
associated with overwhelming the supply of residential
or secondary routes not designed for peak traffic. This
demonstrates a shift in the location and nature of the
supply-demand imbalance, from an overwhelming
localized shock to a manageable, but widespread, system
strain.

Nuance in Supply-Demand Analysis

Further analysis revealed complex dynamics mirroring
established transportation theory. In the Active Rerouting
scenario, the model detected instances where rerouting
by the majority of drivers led to a new equilibrium that
was locally optimal for the individual driver (shorter
perceived travel time) but globally suboptimal for the
system, a classical manifestation of Braess's Paradox
[50]. Specifically, for a set of OD pairs, the alternative
route became so congested by rerouted demand that the
final predicted travel time was only marginally better
than the original congested route, yet the total strain on
the network was higher due to the congestion of two
routes instead of one.

Our model explicitly quantifies this effect by showing
that the congestion event—the "word" whose meaning
was changed by the "traffic attacker"—forces a re-
contextualization (WSD process) of the entire network
structure. The original polysemy of the traffic state
(congested/free-flowing) is resolved by the model, but

the resolution itself is a dynamic, complex, and
potentially paradoxical process. The network capacity
(supply) is a fluid concept, contingent on how demand is
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applied.
DISCUSSION

The results of our study highlight the significant potential
of using an adversarial, supply-shock approach to
analyze urban traffic congestion. By treating a traffic
incident as a "traffic attacker,” we can move beyond
traditional descriptive and predictive modeling to a more
proactive and analytical framework. Our model provides
a new tool for urban planners and traffic engineers to
stress-test their transportation networks and identify
hidden vulnerabilities before a real-world event occurs.

The analogy with Word Sense Disambiguation proved to
be more than just a conceptual aid; it provided a guiding
principle for the model's design. Just as a word's meaning
is dependent on its context, the state of a road segment is
a function of its interconnected environment. A sudden
change in one location's state forces a network-wide re-
evaluation, a process our model is specifically designed
to simulate. The success of our approach confirms the
value of this interdisciplinary perspective.

The Impact of Behavioral Feedback on Congestion
Propagation

The integration of the Behavioral Feedback Mechanism
(BFM) provides the most critical and realistic insights
into congestion dynamics. The BFM demonstrates that
the response to a supply shock is a dynamic negotiation
between the available supply and the adapting demand.

Firstly, the observed reduction in ATtotal is associated
with the intuitive benefit of rerouting. When informed of
a major supply failure, the system's overall performance
improves slightly because drivers leverage unused
network capacity. This positive effect should be
considered a victory for modern smart city initiatives and
navigation services [47]. However, this improvement is
associated with the cost of significantly increased
congestion diffusion, as evidenced by the higher CPI.
This means that while the average delay is less extreme,
the number of people experiencing some level of
congestion is higher. For urban planning, this shift is
vital: it suggests that mitigation efforts should not only
focus on relieving the original bottleneck but also on
protecting the peripheral, non-arterial routes that are
vulnerable to rerouted demand.

Secondly, the dramatic shift in Rmax from the localized,
overwhelming failure (10.5) to the diffused, critical
overload (4.1) is a powerful illustration of the WSD
analogy. The "traffic attack” changes the context, forcing
the demand (the traffic flow) to find a new "meaning" or
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path. The network finds a new state where the congestion
is less severe at the point of origin, but the critical
overload point is merely moved to another, less resilient
part of the system. This phenomenon is associated with
real-world observations where traffic accidents on major
highways immediately spill over onto local residential
streets, overwhelming local supply and generating new,
secondary bottlenecks that were not previously
identifiable as points of failure [21]. This implies that
current congestion indices and performance measures
[31, 32, 33] must be adapted to account for both the
intensity and the geographic spread of congestion.

Thirdly, the subtle but observable manifestation of
Braess's Paradox within the active rerouting model [50]
reinforces the idea that an adaptive demand system does
not predict an optimal global state. When individual
drivers act to minimize their own travel time based on the
immediate (or predicted) state of the network, their
collective action can still lead to a less efficient outcome
for the entire network. Our model, therefore, provides a
valuable platform for testing traffic control strategies [38,
39] against selfish behavioral responses, moving toward
a framework that predicts system failure rather than just
individual link failure.

Relevance to Supply-Demand Dynamics

Our research fundamentally reframes congestion analysis
around the dynamic interaction of supply and demand.
Unlike earlier models that focused on static capacity
constraints [37], our framework treats supply as a
transient vulnerability that can be immediately targeted
and exploited. The insights gained—that rerouting
converts localized shock into diffused strain—is
paramount for creating resilient infrastructure. Planners
should focus on strengthening the network's low-
centrality links (which bear the brunt of rerouted
demand) and implementing dynamic, demand-aware
traffic management systems [39] that can proactively
adjust signal timings to absorb the excess flow from
rerouting. This holistic, network-centric view is essential
for sustainable transportation systems [33].

Limitations and Future Work

While our framework is a significant step forward, it is
not without limitations. The current BFM uses a
simplified probabilistic model for driver rerouting.
Future work could explore more sophisticated behavioral
models, such as those based on explicit utility functions
or learning-based path choices (e.g., modeling the
influence of real-time navigation apps and historical
driver preferences) [40]. We also acknowledge that our
model currently simulates a single, targeted attack.
Future research could investigate complex attack
patterns, such as multiple simultaneous supply
disruptions or cascading failures, to simulate large-scale
natural disasters or coordinated events. Furthermore,
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exploring other advanced GNN architectures [6, 11] or
transformer-based models [45, 52] could potentially
further enhance the model's ability to model long-term
spatio-temporal  dependencies. Integrating  our
framework with scalable traffic simulators [47] would
allow for real-time applications and greater validation
depth.

CONCLUSION

This research presents a novel, adversarially-inspired
framework for analyzing urban traffic congestion from a
dynamic supply-demand perspective. By introducing the
ATraffic model and its Traffic Attacker module, we
demonstrated a powerful new methodology for stress-
testing road networks. Our critical finding is that while
active behavioral rerouting is associated with alleviating
the intensity of a supply shock, it simultaneously diffuses
the congestion across a wider geographic area, shifting
the supply-demand crisis from major arteries to
vulnerable peripheral routes. This work confirms the
necessity of moving beyond passive traffic forecasting
toward an active, analytical framework that integrates
both the spatial-temporal dynamics of flow and the
adaptive behavior of demand. The insights derived from
this adversarial, supply-shock approach are crucial for
designing transportation systems that are not only
efficient but fundamentally resilient in the face of
inevitable, unforeseen disruptions.
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