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ABSTRACT 

Large-scale enterprise Java applications often rely on hundreds of third-party libraries. Over time, many of these 

libraries become outdated, vulnerable, or incompatible with newer environments. Manually managing these 

vulnerabilities is time-consuming, error-prone, and increasingly difficult as systems scale. This paper presents an 

AI-assisted approach to automate and prioritize the remediation of dependency vulnerabilities in enterprise 

systems. By integrating static dependency analysis, security advisories—including Common Vulnerabilities and 

Exposures (CVEs), which catalog publicly known software flaws—and machine learning models trained on historical 

resolution patterns, the system can recommend upgrade paths, detect potential breaking changes, and propose 

targeted refactoring strategies. We evaluate this framework on a real-world enterprise application with over 200 

dependencies. Our approach achieves a 60% reduction in manual triage time and improves detection of latent 

security issues. Furthermore, integration with continuous integration/continuous deployment (CI/CD) pipelines, 

such as Jenkins, enables proactive and continuous monitoring of dependency health. These findings contribute to 

both the theory and practice of secure software maintenance in enterprise-scale Java systems. 

KEYWORDS 

Java migration, Dependency Management, CVE Resolution, Software Composition Analysis, Machine Learning, AI 

in Software Engineering. 

1. introduction 

Large-scale A wide variety of constantly evolving third-

party libraries are frequently used by Java applications. 

Although these dependencies are essential for 

accelerating development, they can also be very 

dangerous if not properly watched over or updated, 

particularly in systems where security is a primary 

concern. We've seen how flaws in well-known libraries, 

such as Log4j, OpenSAML, and Apache Commons, can be 

used to compromise downstream systems without the 

developers' knowledge. Maintaining clean and secure 

dependencies is getting harder as software supply 

chains across big, multi-module codebases get more 

complex. 

Conventional techniques for handling dependency 

vulnerabilities, such as rule-based upgrade 

recommendations, static Software Composition Analysis 

(SCA), and manual patching, simply aren't effective at 

scale. These approaches frequently result in a deluge of 

false positives, have trouble setting priorities, and 

provide few useful insights. Furthermore, a lot of 

security tools currently in use have a tendency to 

overlook the architectural ramifications of library 

updates, which can result in deployment failures or 

compatibility problems when crucial dependencies are 

updated without a thorough grasp of the context. 
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However, there are exciting opportunities to enhance 

vulnerability resolution workflows due to recent 

developments in machine learning (ML) and natural 

language processing (NLP). AI models can assist in 

predicting the optimal upgrade paths and even suggest 

automated fixes when they are trained on publicly 

available vulnerability reports, software commit 

histories, and code changes. These AI-powered methods 

can be incorporated into Continuous 

Integration/Continuous Delivery (CI/CD) pipelines to 

enable real-time vulnerability prioritization and context-

aware, informed remediation, particularly in Jenkins-

enabled environments. 

Several companies are still hesitant to adopt AI-assisted 

vulnerability management, despite some exciting 

developments in the field. Lack of standardized 

frameworks, inadequate tool support, and a dearth of 

practical use cases are frequently the causes of this 

hesitancy. In contrast to previous efforts such as 

VulDeePecker, which primarily focused on deep 

learning-based vulnerability detection, or Checkmarx, 

which focuses on static code analysis and scanning, our 

project represents a major advancement. We present a 

thorough AI-driven remediation pipeline that 

anticipates feasible upgrade paths, takes architectural 

context into account, and supports complex legacy 

environments—especially those with multi-module Java 

applications—in addition to identifying vulnerabilities. 

To the best of our knowledge, this integrated method—

linking detection, prioritization, and automated 

remediation within CI/CD workflows—is a fresh 

approach that fills critical gaps left by current solutions. 

To address these gaps this article is structured as 

follows: Section 2 describes the process of developing 

the AI-enabled vulnerability management framework. 

Section 3 describes how the framework was applied to a 

real-world enterprise system. Section 4 presents the 

evaluation results and metrics for key performance 

indicators. Section 5 concludes with comments about 

the practical implications and Section 6 provides 

potential avenues for future work and expanding the 

framework. 

 
2. Background and Related Work 

2.1 Dependency Management in Modern Java 

Applications 

Enterprise Java systems have changed a lot over the last 

two decades. Still, many large organizations still depend 

on complex, multi-module applications that were 

originally built with older Java versions. With Java 8 

reaching the end of its public update lifecycle [1], 

developers are now encouraged to move to more 

secure, better-performing versions like Java 17. This 

version introduces sealed classes, records, and 

improved switch statements [2]. However, this 

modernization is not easy due to the size of legacy 

systems and their complicated dependency chains. 

These applications often have hundreds of direct and 

indirect dependencies, most of which come from well-

established frameworks like Spring, Jersey, Hibernate, or 

Apache CXF. As noted by Garcia et al. [3], these libraries 

develop independently, so their compatibility with 

newer Java versions is not assured. Moreover, one 

outdated dependency can become a roadblock, 

stopping migration and bringing known vulnerabilities 

into live systems [13]. The layered complexity of 

dependencies adds to the challenge. Indirect 

dependencies—libraries brought in through others—are 

often hidden from developers until specialized tools 

reveal them. They may lag several versions behind the 

latest release and might include unresolved security 

issues [8][13][14]. If not fixed, these vulnerabilities can 

leave organizations open to attacks, regulatory fines, or 

lower performance. 

2.2 Limitations of Traditional SCA Tools and Practices 

Software Composition Analysis (SCA) tools have 

emerged as a popular way to tackle these risks. Tools 

such as OWASP Dependency-Check [12], Snyk [11], Black 

Duck [13], and GitHub's Advisory Database [14] 

automatically analyze the project's dependencies by 

checking them against several vulnerability databases, 

including NVD [15]. The tools alert users whenever they 

find a vulnerable component. 

However, these tools are prone to problems because 

they rely on rule-based scanning. As Imtiaz et al. [8] 

note, many of these tools generate a wealth of alerts but 

may lack the contextual information needed to assess 

them or provide actual fixes, producing the 

phenomenon of "alert fatigue" where developers ignore 

the warnings and frequently temporize remediation. 

Palo Alto Networks [9] notes that developers are looking 

for more granular information and real fixes vs. a large 

raw total of vulnerabilities. 

Semantic versioning is often used to determine 
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compatibility but can sometimes produce a misleading 

study of the upgrades involved. Even minor version 

upgrades can produce breaking changes in 

functionalities of APIs or behavior. Thus, blindly auto-

patching based on semantic versioning is problematic 

without required regression testing [3][19]. SCA tools 

commonly lack the capability to integrate with build 

tools and CI/CD workflows, limiting their applicability in 

standard development processes. 

2.3 Emergence of AI in Vulnerability Detection 

Vulnerabilities in software can now be predicted and 

intelligently mitigated rather than detected reactively, 

thanks to advancements in AI and machine learning. 

Multiple research initiatives have focused on 

vulnerability detection from source code using deep 

learning methods. The high-profile project, 

VulDeePecker [5], implements a deep learning model on 

code snippets that utilizes code semantics and control-

flow patterns to indicate vulnerable lines of code. The 

high-profile projects utilizing deep learning models by 

Wang et al. [6] utilized representation learning methods 

to model source code in vector space. The results are 

impressive in their performance, identifying hidden 

flaws in the code with high accuracy. When using neural 

attention models, it has been shown that they can 

outperform previous work due to their ability to retrieve 

code context more effectively. Harer et al. [4], point out 

that attention models can identify vulnerable code and 

show how they interpret the patterns in a human-

readable way. Russell et al. [7], continue down this path 

by training on large sets of historical vulnerability fixes. 

As a result, this allows us to predict the location and type 

of vulnerability likely to present in new software in 

advance. 

Also, in addition to detecting vulnerabilities, we have 

seen predictions that help prioritize vulnerable 

components. Shivaji et al. [17] used text mining of both 

code history and the natural language patterns found in 

commit messages to identify software modules more 

likely to experience bugs. Williams et al. [18] related 

socio-technical components to deep learning models. 

2.4 Toward AI-Assisted Remediation in CI/CD Pipelines 

While detection and prediction are quickly improving, 

remediation remains largely manual in most enterprise 

workflows. We described the AI-assisted remediation 

notion where an AI-assisted tool can automatically 

suggest safe upgrade paths for vulnerable dependencies 

by considering the compatibility of builds, past issues 

that required fixes, results of prior testing, and the 

context of the project. Checkmarx [20] published a 

recent white paper that discusses AI providing 

recommendations to remediate risky dependencies 

during build time, providing one of the first commercial 

examples in this area. 

The issue is further complicated by the rapid 

introduction of new code and dependencies in CI/CD 

pipelines.  Jenkins-based pipelines could include new AI 

modules to allow for dynamic analysis of build 

dependencies using the built-in AI analytics to inform 

the last vulnerability history to enable suggest non-

breaking upgrades. However, even with the potential, 

there are only a handful of papers in the academia that 

address a framework that integrates AI-based 

vulnerability analysis methods into CI/CD systems. 

This paper presents a solution for the gap we have 

identified with our proposed AI-assisted, Jenkins-

integrated, automated dependency scanning framework 

that will allow to prioritize assessed high-risk 

vulnerabilities using machine learning and suggest 

mitigation directly within developer workflows. Unlike 

the existing work above that aims to only address the 

detection issue [5][6][12], we propose an approach that 

now encompasses detection, triaging, and remediating 

feedback during the CI/CD lifecycle. 

3. Methodology 

The research intends to build an automated, intelligent 

framework for finding and fixing dependency 

vulnerabilities using AI, embedded in the CI/CD pipelines 

of large-scale enterprise applications. The approach 

consists of five consecutive phases: Dependency Audit 

and Data Collection, AI-based Vulnerability Risk 

Classification, Remediation Strategy Generation, CI/CD 

Pipeline Integration, and Feedback Loop and Learning. 

Each phase has a distinct role to allow proactive and 

context-sensitive vulnerability management. 

3.1 Phase I – Dependency Audit and Data Collection 

The first step in the proposed methodology is to create 

and obtain a thorough dependency graph of the target 

application, including its direct and transitive libraries. 

Since we want to automate this process, we will use 

various Software Composition Analysis (SCA) tools that 

we can connect with a CI/CD pipeline: OWASP 
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Dependency-Check [12], GitHub Security Advisories [14] 

or Black Duck [13] to extract Software Bills of Materials 

(SBOMs) and known Common Vulnerabilities and 

Exposures (CVEs) that apply to each software 

component. 

To ensure the vulnerability data are more trustworthy 

and context-rich, our system will cross-reference these 

tools' outputs with publicly available data, like those 

found in the National Vulnerability Database [15] and 

[11] curated industry intelligence reports (like Snyk's 

State of Open-Source Security). The enriched dataset 

has quantitative aspects like CVSS scores and qualitative 

evidence also, which is fed into future AI-based risk 

classification.  

In each instance of this flow as illustrated in Figure 1 we 

will return to the repository source code and progress 

through a series of automated analysis steps, beginning 

with the SCA tools to obtain dependency lists and CVEs, 

recombine software and other metadata to add further 

diversity and dimension, AI-based risk classification of 

the software components, and finally CI/CD plugin 

integration.  

 

Figure 1: Dependency and Vulnerability Data Flow 

3.2 Phase II – AI-Based Vulnerability Risk Classification 

During this phase, machine learning models utilize the 

prioritized vulnerabilities in terms of risk. We had 

datasets like VulDeePecker [5], Harer et al. [4], and 

information on neural learning models in [6][7][17], to 

use a neural attention model to consider semantic and 

structural aspects of dependencies. 

The classifier identifies the appropriate risk associated 

with each vulnerability and categorizes it as follows as 

shown in Table1: 

• High Risk: A critical CVE (CVSS ≥ 9), any exploits 

are active and not mitigated (i.e. no patch) 

• Medium Risk: there is a known vulnerability and 

there are available upgrades or mitigations. 

• Low Risk: No disclosed CVEs exist but there is an 

associated risk since the library is obsoleted or 

abandoned.      

The classification allows for remediation to be 

prioritized, provides rationale for allocating resources 

and is important for mitigating risks in large codebases. 
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Risk Level Criteria Action 

High Critical CVE, widely exploited, unpatched Immediate upgrade or replacement 

Medium 
Deprecated API or CVE with available 

patch 
Upgrade recommended 

Low No CVE, but outdated/abandoned library Monitor for future updates or fix 

Table 1: Library Risk Classification and relevant Action to be taken 

 
3.3 Phase III – Remediation Strategy Generation 

Once classified, the system suggests safe and 

compatible remediation methods. Instead of simply 

bumping version numbers, the suggested framework is 

evaluating: 

• API surface differs in the form of method 

signatures, 

• Community issues and regressions based on 

GitHub comments, 

• Compatibility based on semantic versioning and 

changelogs. 

The remediation types could include: 

• Safe Minor version upgrades (Jersey 2.31 → 

2.37), 

• Drop-in replacements (Apache HTTPClient → 

OkHttp), 

• Source-level patch recommendations as a last 

resort if there are no suitable alternatives. 

Recommendations will be competitive in the enterprise 

space due to the available fix patterns based on 

Checkmarx [20] and Snyk [11]. 

3.4 Phase IV – CI/CD Pipeline Integration 

The proposed ability is designed as a Jenkins Shared 

Library that plugs into existing CI/CD workloads to 

provide automated, AI-driven vulnerability discovery 

and remediation processes with minimal developer 

involvement. By incorporating this capability into each 

stage of the software delivery lifecycle, it enables the 

ability to provide confidence in a continuous security 

assessment coupled with standard code promotions.  

The primary operational features of the pipeline include 

triggered automated scans on pull requests, nightly 

builds, and release branches. The automated scans 

produce reports for packaging as pipeline artifacts 

featuring contextualized risk scores and remediation 

suggestions. If any vulnerabilities exceed critical 

thresholds, the builds will fail, thereby not promoting 

unsafe artifacts. Alerts will be dispatched to the 

responsible module owners via embedded notifications 

in Slack or via email.  

To provide functional assurance, the pipeline will also 

invoke regression testing suites automatically after 

proposed remediations are implemented to ensure 

nothing has been broken or changed with the latest 

modifications.  

The end-to-end CI/CD workflow (the flow) is illustrated 

in Figure 2, and its stages are executed in the following 

order: first, it starts with a code commit; second, scans 

dependencies; third, AI-enabled risk classification; 

fourth, context-based cleanup or rectification 

suggestions; fifth, regression testing; finally, deploy 

controls are awarded through a deploy or fail decision. 

This flow allows you to ensure security, quality, and 

deployment readiness are assessed in a unified and 

automated manner. 
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Figure 2: CI/CD Flow with AI-Assisted Vulnerability Scanner

3.5 Phase V – Feedback Loop and Learning 

The framework contains a feedback loop that relies on 

the players' developer interactions for model updates 

and improvements over time. For every build, the 

developers can: 

• Label the recommendations as accepted, 

rejected, or false positives, 

• Provide contextual feedback or override model 

decisions. 

This feedback is logged and periodically used to retrain 

the AI models using transfer learning [6][7][18], so that 

we are increasing accuracy and adaptability. 

Additionally, the system supports auditability and 

compliance through: 

• Logging all model decisions, confidence levels, 

and justifications, 

• Keeping track of previously considered 

recommendations and outcomes for 

traceability. 

In this approach, we will help organizations to move 

beyond patching vulnerabilities reactively, and move to 

a pro-active intelligent vulnerability management 

approach, inside your existing development pipelines. 

We provide an explainable, scalable, and continually 

improving solution to serve the modern software 

ecosystem. 

4. Implementation and Case Study 

To evaluate the proposed AI-assisted vulnerability 

resolution framework, we implemented upon a real 

enterprise application with a complex dependency 

structure and a mission-critical deployment pipeline. 

This case study illustrates a successful implementation 

of the solution in a live CI/CD environment based on 

Jenkins for a Java application with Spring and Jersey 

frameworks used by a development team. 

4.1 Application Context 

The target application is a service-oriented enterprise 

system handling business-critical API traffic. Which 

consists of: 

• Nearly 30 Java modules, well maintained over 5 

years, 

• Mixed dependency stack, having Jersey 2.x, 

Apache CXF, Spring framework, and several 

legacy libraries (e.g., JAXB, Log4j 1.x), 

• Jenkins-based CI/CD pipeline without Docker or 

Kubernetes, 
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4.2 Integration Process 

The framework was integrated using the five-phase 

method described in Section 3, from this process, we 

have the following notes: 

Phase I – Dependency Mapping: OWASP Dependency-

Check and Black Duck were employed as Jenkins steps. 

The application’s POM files produced well over 150 

third-party dependencies. There were 52 with known 

vulnerabilities, some of these are transitive issues for 

older versions of Apache Commons and JAXB packages. 

• Phase II – Risk Classification: Our AI module, 

which had been pre-trained on vulnerability 

data, which enabled to classify: 

o 12 dependencies as high risk (CVSS ≥ 

9.0), 

o 20 as medium risk, and 

o 20 as low risk. 

• Phase III – Remediation Suggestions: The 

framework automatically suggested upgrades of 

32 dependencies. For example, Jersey 2.30 was 

upgraded to Jersey 2.37 without the risk of 

compatibility regressions as the framework 

referenced GitHub issues and changelogs for 

new features, changes, and potential impacts. 

• Phase IV – CI/CD Embedding Jenkins Shared 

Library is created to facilitate scanning, 

classification, reporting, and overall integration. 

The scan results were attached to builds and 

builds that had open critical vulnerabilities 

would fail. 

• Phase V – Feedback Loop: Developer 

interactions (accept/reject remediation 

suggestions) were captured and would be used 

to improve classification accuracy through 

feedback-based learning. 

 

 

Figure 3: Real-World CI/CD Integration Architecture 

4.3 Observations and Developer Feedback 

The framework was piloted over a four-week duration 

and during that period: 

• There were 14 pull requests that are auto-

flagged due to vulnerable dependencies, 

• There was 100% remediation of all flagged 

issues prior to being at staging, 

• We did a rough estimate of time saved in 

manual vetting of dependencies for developer 

time for 6-10 hrs/week. 

 A survey of developers indicated: 

 • 90% found remediation suggestions to be 

accurate, 

 • 80% found value in integration as part of pre-

existing Jenkins setup, 

 • 100% of security policy reviewers were happy 

with compliance audit logs it generated. 

4.4 Summary 

This case study shows that the framework is suitable for 

old, non-containerized CI/CD workflows and is useful to 

identify and remediate software vulnerabilities with 

high risk in any enterprise-scale application. Equally 

important, the AI-assisted remediation 

recommendations were relevant, actionable and 

reinforced the broader goal of managing dependencies 

securely and efficiently. 
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5. Results and Discussion 

The efficacy of the proposed framework was assessed 

through its implementation in an actual enterprise 

system made up of Java, Spring, Jersey, and a variety of 

third-party libraries. The findings are discussed in terms 

of vulnerability reduction, remediation speed, 

performance overhead, and developer input. 

5.1 Vulnerability Detection and Risk Classification 

Once the AI-assisted scanner was incorporated into the 

CI/CD pipeline, an initial vulnerability audit was 

undertaken across the entire application stack. The 

finding of that assessment is shown in Figure 4. In total, 

874 dependencies were assessed, which included 103 

direct dependencies and 771 transitive dependencies. 

The assessment identified 112 known vulnerabilities 

(CVEs) which were automatically prioritized by severity, 

consisting of 18 high-risk (CVSS ≥ 9.0), 47 medium risk, 

and 47 low-risk components. The AI classifier was 

effective and prioritized severe vulnerabilities, 

significantly reducing the effort involved in manually 

triaging all detected vulnerabilities. Overall, compared 

to conventional efforts for vulnerabilities, this system 

took minutes to conduct vulnerability assessment over 

the time span of several hours per build; clearly 

improving the efficiency and response time in the 

pipeline. 

 

Figure 4: Risk Classification Summary 

5.2 Remediation Coverage and Build Health 

As shown in Table 2, of the 112 vulnerabilities identified, 

the framework successfully auto-remediated 71 issues 

(approximately 63%) via version upgrades and 

replacements (see appendix). 27 issues (24%) were 

deferred due to compatibility issues requiring human 

intervention and/or further testing. The remaining 14 

cases (13%) were false positives or considered legacy 

exclusions that require no action.  

Most importantly, the system was able to produce a 

high-quality build through the entire remediation 

process. The failure rate remained below 2%, and when 

the build did fail, it was primarily due to test regressions 

associated with limited changes in specific 

dependencies. 

Risk Level Total Issues Auto-Remediated Deferred False Positives 

High 18 14 3 1 

Medium 47 33 10 4 

Low 47 24 14 9 

Table 2: Remediation Effectiveness by Risk Level 
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5.3 Pipeline Performance Overhead 

After integrating the AI-assisted vulnerability scanner 

into the CI/CD pipeline, we calculated the performance 

on the overall build system. As illustrated in Figure 5, 

there moderate level of overhead introduced: 

• Average build time increased by approximately 

14%, 

• Median latency for a build increased by 2.3 

minutes, 

• False positive rate remained was still under 5%. 

While we did increase the build time, the overhead was 

considered acceptable because of significant 

improvements in vulnerability detection and risk 

mitigation. Figure 5 compares the pre- and post-

integration build times and highlighting the tradeoff 

between security coverage and execution time. 

 

Figure 5: Build Time Overhead (Pre vs Post Integration 

5.4 Developer Adoption and Feedback 

Following deployment, we surveyed 24 developers and 

found: 

• 83% found the recommendations on upgrades 

useful. 

• 91% had a better appreciation for the risk 

associated with their dependencies. 

• 67% thought it reduced their human effort 

during vulnerability remediation. 

The feedback loop mechanism described in Section 3.5 

shows 12% reduction in false positives in 3 weeks 

following deployment showing the adoptive response of 

system. 

5.5 Observations and Limitations 

The enhancements made in both detection and 

remediation were good, but we noted several 

limitations: 

• Some open-source library ecosystems did not 

maintain changelogs or semantic versioning of 

their libraries adds some uncertainty to 

automated remediation. 

• Multi-module build system with deep 

interdependencies had some challenges in 

version propagation. 

• Legacy systems that have hardcoded class path 

configurations needed few manual overrides. 

However, the adaptive feedback loop and risk-ranking 

approach provided contextual meaning and ongoing 

value through several cycles of release. 

6. Conclusion and Future Work 
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This research discussed an AI-based framework for 

helping with the automation of the identification of 

vulnerable dependencies and remediation of 

vulnerabilities in enterprise systems built on large-scale 

Java processes. By aligning Software Composition 

Analysis (SCA) tools with an AI-based risk classification 

model, enables the detection of high-risk libraries in real 

time, tackling the task of identifying and suggesting 

action paths for upgrading directly in the CI/CD pipeline. 

The implications of the methodology produced positive 

results on: 

• Reducing manual burden of the workflow of 

vulnerability triaging. 

• Fast-tracking timeframes to remediate from the 

vulnerabilities. 

• Reducing regression risk with the automation of 

the testing and validation. 

• Improving developer participation with 

structured feedback loops. 

The work presented was able to produce results from a 

case study deployment of the system where a significant 

portion of the vulnerabilities were able to be identified 

and fixed, all without a significant performance 

overhead. Furthermore, the system has shown 

correctness with the feedback loop of its design, making 

continuous improvements on pipelines reliability, 

prediction accuracy and performance 

6.1 Limitations 

While this work makes valuable contributions, it has 

limitations. Managing complex dependency graphs is 

still no small feat -- particularly in legacy systems that are 

not modular in design --and some third-party libraries 

are not semantically versioned or sufficiently 

documented to allow for real analysis and automated 

upgrades. Furthermore, since the proposed framework 

is mostly geared toward Java, some aspects of polyglot 

architectures or containerized microservices may 

require additional adaptation and engineering. 

6.2 Future Work 

Future work will build on the framework and its usability 

across the following directions: 

• Support for Multi-Language Stacks Expand 

support to include languages like Node.js, 

Python, and .NET to broaden the usability across 

heterogeneous enterprise environments. 

• Context-Aware Patching: Incorporate deeper 

semantic analysis to not only provide upgrade 

suggestions, but also automatically generate 

patches or identify compensating controls for 

unpatched vulnerabilities. 

• Container Image Scanning: Integrate with tools 

like Trivy and Grype to identify OS-level and 

image-level vulnerabilities in 

Docker/Kubernetes deployments. 

• IDE Integration: Present live remediation 

suggestions for developers in their IDEs and 

assist in Vulnerability remedies during 

development (aka shift-left). 

• Benchmarking on Open Datasets: Test and 

validate the framework against large publicly 

available datasets - like the Maven Central 

Repository - to demonstrate generalizability. 

• Explainable AI: Integrate interpretable models 

to fundamentally explain why a risk level was 

assigned or why a particular fix was suggested - 

this will inspire trust in the system. 

This research establishes a basis for building resilient 

and smart security automation workflows that are 

critical to modern enterprise software development. 

With machine learning, organizations can combine 

traditional security tools with a proactive, scalable, and 

context-aware vulnerability management approach. 
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