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ABSTRACT 

In contemporary IT organizations, Change Advisory Boards (CABs) are entrusted with ensuring that technical 

changes—ranging from infrastructure updates to software deployments—do not compromise operational stability. 

These boards traditionally rely on manual processes, expert judgment, and historical precedents to assess risk and 

approve changes. While effective in low-volume environments, this model begins to break down as the rate and 

complexity of changes increase in DevOps-driven ecosystems. The reactive nature of traditional CAB operations 

often leads to delays, inconsistent risk assessment, and suboptimal change approvals. 

This research introduces a machine-learning-based system designed to augment CAB decision-making with 

automated, data-informed risk evaluations. By pulling data from multiple IT sources—including change records, 

deployment logs, historical incidents, and system health indicators—the proposed framework applies predictive 

analytics to compute a quantifiable risk score for each change. This score, combined with interpretable AI 

justifications, provides CAB members with clear, actionable insights. The goal is not to replace human oversight but 

to enhance it by directing attention to high-risk cases and accelerating the approval of safe, repetitive changes. 

The paper outlines the architecture, data pipeline, feature engineering, model training methodology, risk scoring 

strategy, and interface integrations. Results from experimental trials demonstrate tangible benefits in incident 

reduction, review efficiency, and decision consistency. By embedding this system into ITSM workflows, 

organizations can reduce change failure rates and enhance service reliability while maintaining governance and 

compliance. 
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1. INTRODUCTION 

Every alteration introduced to a production system—be 

it a code deployment, configuration update, or 

infrastructure modification—carries the inherent risk of 

destabilizing the service. While some changes may be 

minor or routine, others can cascade into major outages, 

customer dissatisfaction, or compliance violations. To 

manage this risk, organizations have long relied on 

CABs, which act as formal review panels to assess the 

necessity, scope, and potential consequences of each 

change request. 

Despite their intent, traditional CABs face operational 

shortcomings. They typically evaluate risk based on 

static templates, general guidelines, or the subjective 

knowledge of senior reviewers. Change descriptions are 

reviewed in isolation, without dynamic correlation to 

historical incidents or system behavior patterns. In 

environments governed by continuous delivery, where 

hundreds of changes may be submitted in a single sprint, 

this model proves insufficient—leading to either 

excessive gatekeeping or blind trust in automation. 

This research advocates a transition from intuition-driven 

 

https://aimjournals.com/index.php/irjaet


INTERNATIONAL RESEARCH JOURNAL OF ADVANCED 

ENGINEERING AND TECHNOLOGY (IRJAET) 

https://aimjournals.com/index.php/irjaet 

 

 

pg. 17 

governance to data-augmented decision-making. We 

propose a risk prediction system that leverages historical 

data and machine learning to assess each proposed 

change in real time. The system analyzes a rich set of 

features—including contextual metadata, prior incidents, 

system dependencies, and natural language content—to 

output a probabilistic score reflecting the likelihood of 

post-change disruption. 

Rather than slowing down deployments, this system 

prioritizes high-risk changes for review while 

automatically approving those with strong success 

histories and low contextual risk. This shift enables 

CABs to scale their effectiveness without increasing 

manual workload, thereby aligning IT governance with 

modern delivery speeds. 

Proposed Framework 

1. Data Ingestion Layer 

The framework begins by aggregating data from 

disparate operational sources across the organization. To 

ensure comprehensive risk modeling, inputs are captured 

from: 

● Change Management Systems (ServiceNow, 

Jira Service Management): 

 These systems provide detailed metadata on 

each change request, including fields such as 

type, urgency, submission timestamp, impacted 

systems, and requestor identity. They also 

capture change history, rollback status, and 

implementation windows. 

 

● Incident Management Logs (PagerDuty, 

Opsgenie): 

 Incident records tied to specific services or time 

periods are collected to identify patterns of 

instability post-change. Correlation between 

incidents and specific change parameters (e.g., 

time of deployment, affected systems) forms a 

critical input for model training. 

 

● Configuration Management Databases 

(CMDBs): 

 These offer a detailed mapping of service 

dependencies, system criticality, and 

infrastructure ownership. The inclusion of 

upstream/downstream relationships helps predict 

cascading failures. 

● CI/CD Pipeline Logs (Jenkins, GitHub Actions, 

ArgoCD): 

 Build and deploy events are analyzed for 

insights into deployment frequency, rollback 

trends, and automation coverage. Failed builds 

and high rollback rates serve as indirect 

indicators of risk. 

 

● Monitoring and Alerting Tools (Prometheus, 

Datadog): 

 Pre-change system health, historical anomaly 

detection, and alert frequency are incorporated to 

evaluate baseline stability prior to each change. 

All collected data flows through standardized ETL 

pipelines (e.g., Airflow, AWS Glue), where it is cleaned, 

normalized, and stored in a unified data lake or feature 

store. The architecture supports both batch and near-real-

time ingestion. 

2. Feature Engineering 

Raw logs and metadata are transformed into structured, 

model-consumable features across several dimensions: 

● Contextual Features: 

 These include the type of change (infrastructure, 

application, policy), estimated impact, whether 

the change violates blackout windows, and its 

business function alignment (e.g., customer-

facing vs. internal tool). 

 

● Historical Features: 

 Derived from change logs and incident records. 

Examples include failure rates of prior changes 

by the same engineer, frequency of incidents on 

affected services, and the track record of change 

categories (e.g., DB schema vs. static content). 

 

● Temporal Features: 

 Day and time of change, correlation with peak 

usage hours, frequency of deployment batches, 

and average approval time based on time-of-day 

and day-of-week patterns. 

 

● Dependency and Impact Features: 

 Number of dependent services, service tier (e.g., 

mission-critical vs. analytical), presence of 

redundancy, and customer SLA association. 

 

● Textual Features: 

 Change descriptions are parsed using NLP 

techniques (e.g., BERT, TF-IDF) to extract risk 

signals. Language suggesting uncertainty (e.g., 
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“may impact,” “requires verification”) is 

flagged, while specific terminology (e.g., 

“hotfix,” “reboot,” “database migration”) is 

scored based on historical risk. 

Advanced semantic enrichment—such as phrase 

embeddings, part-of-speech tagging, and entity linking—

is used to retain nuance and context in language-based 

features. 

3. Machine Learning Model Layer 

The core predictive capability is powered by an ensemble 

of classification models: 

● Tree-Based Models (Random Forest, 

XGBoost): 

 These are used for their high interpretability and 

ability to handle structured tabular features with 

nonlinear interactions. They excel at detecting 

historical patterns and outliers. 

 

● Logistic Regression (Baseline): 

 Employed for initial benchmarking and 

scenarios where model simplicity is prioritized. 

 

● Transformer-Based NLP Models (BERT, 

DistilBERT): 

 These models are trained on labeled change 

descriptions to classify them as safe, unclear, or 

high-risk. Fine-tuning is conducted on domain-

specific language corpora. 

 

● Imbalance Handling: 

 Risky changes are significantly 

underrepresented in historical datasets. 

Techniques such as Synthetic Minority 

Oversampling (SMOTE), cost-sensitive 

learning, and focal loss functions are employed 

to prevent models from defaulting to the majority 

class. 

 

● Pipeline Orchestration: 

 Model versioning, training, testing, and 

deployment are managed via platforms such as 

MLflow or Kubeflow. Integration with CI/CD 

allows for continuous retraining and A/B testing. 

4. Risk Scoring Engine 

Each proposed change is evaluated by the model to 

generate a normalized score from 0 to 100: 

● Score Tiers: 

○ 0–40: Low-risk – Auto-approvable; 

flagged only for audit. 

 

○ 41–70: Medium-risk – Review 

recommended; additional approvals or 

testing required. 

 

○ 71–100: High-risk – Requires 

escalation, mitigation planning, and 

possibly rollback plans. 

 

● Explainability with SHAP Values: 

 To ensure transparency, each score is 

accompanied by a ranked list of contributing 

factors. For example: 

 

○ “High failure rate on similar changes 

(21%).” 

 

○ “Change window falls outside support 

hours.” 

 

○ “Last three changes by this requestor led 

to alerts.” 

This makes the scoring process defensible during audits 

and trustworthy for reviewers. 

5. CAB Dashboard / Integration Layer 

To maximize adoption, the system integrates directly into 

existing workflows: 

● ServiceNow and Jira Plugins: 

 CAB members can see risk scores inline on 

change tickets, with expandable sections 

showing reasoning, feature contributions, and 

override options. 

● Web Dashboard: 

 A standalone UI provides insights into risk 

trends, historical overrides, reviewer feedback, 

and model performance metrics. 

 

● CI/CD Integration: 
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 Risk score thresholds can block deployments or 

require extra approvals during pull request 

merges. Webhooks enable automated gating. 

 

● Collaboration Tools: 

 High-risk alerts can be pushed to Slack, Teams, 

or email distribution groups with contextual 

summaries. 

 

All user interactions, overrides, and system decisions are 

logged for traceability and compliance. 

6. Feedback Loop 

The framework incorporates an automated feedback 

mechanism: 

● Outcome Logging: 

 Post-change outcomes (e.g., no issue, triggered 

incident, service degradation) are logged and 

linked to the original request. 

 

● Human Overrides: 

 Manual approvals of high-risk changes, along 

with rationale, are tracked to refine model 

understanding. 

 

● Model Retraining: 

 Retraining occurs monthly or quarterly, 

depending on deployment frequency. The 

framework supports dynamic updates to reflect 

evolving infrastructure, policy, and user 

behavior. 

 

● Adaptive Learning: 

Online learning modules are being explored to allow 

the model to self-adjust between retraining cycles, 

reducing time-to-adaptation. 

Explanation of the Framework 

1. From Static to Dynamic Risk Assessment 

Unlike traditional checklists or static “low/medium/high” 

fields, this model evaluates every change in its full 

historical and operational context. It recognizes nuanced 

factors such as team skill, system load, and recent 

deployment patterns to identify subtle risks that static 

tools miss. 

2. Prioritizing Attention, Not Everything 

Instead of treating all changes equally, the model 

distinguishes those requiring human review from safe, 

repetitive updates. This reduces reviewer fatigue and 

focuses expertise where it matters most—on unfamiliar, 

ambiguous, or mission-critical modifications. 

3. Transparency Through Explainability 

Every score includes detailed reasoning. CAB members 

are no longer asked to “trust the algorithm.” They see 

why a change is considered high-risk and can challenge 

or accept the AI’s logic. 

4. Operational Integration 

Because the system plugs into tools already in use—such 

as ServiceNow, Jenkins, and Slack—it doesn’t demand 

new platforms or training. This ensures low resistance 

and rapid adoption across teams. 

5. Continuous Improvement Over Time 

As systems evolve, so do risks. The feedback loop 

ensures the model grows smarter with each iteration, 

refining its predictions and adapting to organizational 

changes in real time. 
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5. Experimental Results 

To assess the effectiveness of the proposed AI 

framework, a comprehensive evaluation was conducted 

using simulated enterprise-grade datasets modeled after 

real-world IT operations. The dataset comprised over 

43,000 historical change requests submitted across 

various teams, 7,100 incident reports, and two years of 

deployment logs and system telemetry emulating 

platforms such as ServiceNow, Jenkins, Prometheus, and 

PagerDuty. 

Each change record was labeled as either a “success” or 

“failure” based on whether a related incident or 

degradation event occurred within a 72-hour window 

post-deployment. Changes that triggered alerts, required 

emergency rollback, or resulted in customer-facing 

downtime were marked as high-risk cases. This binary 

classification laid the foundation for supervised model 

training. 

A significant challenge encountered was class 

imbalance: only about 17% of all changes resulted in 

negative outcomes, making it easy for naïve models to 

predict “safe” across the board and achieve misleading 

accuracy. To counter this, several advanced resampling 

and weighting techniques were applied: 

● Synthetic Minority Oversampling Technique 

(SMOTE) was used to synthetically expand the 

failure class. 

● Focal loss helped the model focus more on hard-

to-classify examples. 

● Cost-sensitive learning penalized false 

negatives more than false positives to avoid 

missing risky changes. 

Multiple models were trained and benchmarked using 

stratified k-fold cross-validation: 

● XGBoost demonstrated the highest performance 

across the board, offering a precision of 0.89, 

recall of 0.85, and F1-score of 0.86 on the test 

set. It handled the structured, multi-dimensional 

feature space with exceptional robustness. 

 

● BERT-based NLP classifiers outperformed 

traditional TF-IDF or logistic regression 

approaches in interpreting free-text change 

descriptions, especially in ambiguous or terse 

entries. They contributed significantly to the 

ensemble's overall predictive power. 

 

● Logistic Regression, though simpler, served as 

a reliable baseline and helped validate the 

importance of nonlinear feature interactions. 

During real-time simulation of CAB workflows over a 

six-week test period, the framework produced the 

following operational outcomes: 

● 92% of truly high-risk changes were flagged 

accurately before deployment. 

● Auto-approved low-risk changes—identified 

as safe by the model—had a post-deployment 

incident rate of just 13%, validating the 

framework's reliability in bypassing unnecessary 

manual reviews. 

● Average CAB review time was reduced by 

47%, as low-risk changes no longer required 

full-panel scrutiny. 

● Overall incident frequency across weekly 

deployment cycles dropped by 29%, a clear 

signal that risk-aware gating had a measurable 

impact on reliability. 

In addition, CAB participants (consisting of engineers, 

release managers, and service owners) reported higher 

confidence in the approval process. A post-trial survey 

indicated that 87% of reviewers found the SHAP-based 

explanations sufficient to understand and trust the 

model’s decisions. Moreover, routine CAB meetings 

decreased in frequency, and manual overrides became 

more targeted and deliberate. 

Error analysis revealed that the model occasionally 

misclassified edge cases involving: 

● Completely new services with no historical 

data. 

 

● Unstructured change descriptions lacking 

relevant keywords or technical details. 

 

● Systemic cross-service dependencies that were 

not explicitly recorded in the CMDB. 

 

To address these limitations, future improvements will 

focus on incorporating graph-based dependency models 

and more sophisticated natural language context 

extraction to handle cases where textual ambiguity or 

architectural gaps hinder accuracy. 
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6. CONCLUSION 

The use of artificial intelligence in CAB processes marks 

a transformative step toward smarter, scalable, and 

evidence-driven change management. This research 

demonstrates that predictive risk modeling can 

substantially improve operational outcomes by 

embedding intelligence into approval workflows. 

Unlike traditional CAB systems that rely on static rules 

or subjective reasoning, the proposed framework brings 

together contextual awareness, statistical learning, and 

real-time data integration to offer actionable risk 

evaluations. It does not aim to replace human oversight 

but to amplify it—ensuring that expert time is allocated 

to the right problems while safe, repetitive changes are 

handled autonomously. 

The empirical results validate that such systems: 

● Improve the accuracy and speed of change 

approvals. 

● Reduce the likelihood of service-impacting 

incidents 
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