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ABSTRACT 

 

This research presents a stochastic multi-objective optimization framework for the dispatch and decision-making 

processes in integrated electric and thermal energy systems (IETES). The approach considers uncertainties in 

renewable energy generation, load demands, and market prices to ensure reliable and efficient energy management. 

A multi-objective evolutionary algorithm is employed to simultaneously minimize operational cost, emission levels, 

and unmet energy demand. The model integrates both electric and thermal subsystems, including combined heat and 

power (CHP) units, boilers, and energy storage devices. Pareto-optimal solutions are evaluated using a decision-

making tool to identify the best trade-offs among conflicting objectives. The results demonstrate the proposed 

framework’s robustness under stochastic conditions and its potential to support sustainable and economically viable 

energy planning in modern smart grids. 

 

Keywords: Integrated energy systems, stochastic optimization, multi-objective dispatch, thermal and electric energy, 

decision-making, combined heat and power, renewable energy uncertainty, Pareto optimization, smart grid planning, 

energy storage. 

 

INTRODUCTION  

The global energy landscape is undergoing a profound 

transformation, driven by climate change concerns, 

technological advancements, and the imperative for 

sustainable development. Traditional power systems, 

characterized by centralized generation and separate 

energy infrastructures, are evolving into more integrated 

and flexible energy systems (IES) [14, 15, 16, 17, 50]. 

These integrated systems, which couple electrical and 

thermal networks, are designed to enhance energy 

efficiency, reduce carbon emissions, and improve 

overall system reliability by leveraging the synergistic 

interactions between different energy carriers [1, 13, 14, 

15, 16, 17, 18, 21, 23, 25, 26, 27]. The development of 

smart grid technologies and distributed energy 

resources, including renewable energy sources (RES) 

such as wind and solar photovoltaics, has further 

accelerated this transition towards integrated energy 

management [2, 3, 7]. 

However, the increasing penetration of RES introduces 

significant operational challenges, primarily due to their 

inherent intermittency and uncertainty [7, 11, 28, 30, 31, 

32, 33, 34, 35, 36, 45]. Fluctuations in wind speed and 

solar irradiance directly impact power generation, 

leading to discrepancies between forecasted and actual 

outputs, which can compromise system stability and 

economic efficiency. Moreover, the coupled nature of 

electrical and thermal systems adds another layer of 

complexity to the dispatch problem. Optimizing the 

operation of IES requires sophisticated dispatch 

strategies that can simultaneously manage power and 

heat flows, coordinate various energy conversion units 

(e.g., Combined Heat and Power (CHP) plants, heat 

pumps, electric boilers), and effectively integrate energy 

storage solutions [4, 5, 12, 13, 14, 21, 22, 23, 25, 46, 
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47]. 

Furthermore, the optimal operation of IES is inherently 

a multi-objective problem. System operators and 

planners face a trade-off between conflicting objectives, 

such as minimizing operating costs, reducing 

environmental emissions, and ensuring system 

reliability and security [8, 20, 37, 38, 41, 42, 48, 49, 52, 

53, 60, 61, 62]. For instance, minimizing costs might 

involve operating less efficient but cheaper 

conventional units, which could lead to higher 

emissions. Conversely, prioritizing environmental goals 

might require maximizing renewable energy utilization 

and operating cleaner units, potentially at a higher 

economic cost. Therefore, a comprehensive dispatch 

framework must consider these multiple objectives 

concurrently, especially under uncertain conditions [24, 

29, 36, 40]. 

Traditional deterministic dispatch models often fail to 

account for the uncertainties associated with renewable 

generation and load demand, leading to suboptimal or 

even infeasible solutions in real-time operation [30, 32]. 

Stochastic optimization approaches offer a robust 

framework to address these uncertainties by 

incorporating multiple scenarios and their probabilities, 

allowing for more resilient and economically sound 

dispatch decisions [33, 36, 49]. However, solving multi-

objective stochastic dispatch problems often results in a 

set of Pareto-optimal solutions, each representing a 

different trade-off between the objectives. This 

necessitates an effective decision-making mechanism to 

select the most appropriate dispatch strategy based on 

the preferences and priorities of the system operator [39, 

41, 48, 51, 61, 64, 65, 66]. 

This article proposes a comprehensive framework for 

stochastic multi-objective dispatch optimization and 

decision-making for integrated electric and thermal 

energy systems. The proposed methodology explicitly 

models the uncertainties associated with renewable 

energy generation and load demand, formulates the 

dispatch problem as a multi-objective stochastic 

optimization problem, and employs an advanced multi-

attribute decision-making (MADM) approach to select 

the most suitable operating strategy from the set of 

Pareto-optimal solutions. The objective is to provide a 

robust and flexible dispatch tool that can enhance the 

operational efficiency, environmental performance, and 

reliability of IES in the presence of significant 

uncertainties. 

METHODS 

The proposed framework for stochastic multi-objective 

dispatch optimization and decision-making for 

integrated electric and thermal energy systems involves 

several key methodological steps, including system 

modeling, uncertainty characterization, multi-objective 

problem formulation, stochastic optimization, and 

multi-attribute decision-making. 

System Modeling 

The integrated electric and thermal energy system is 

modeled as a network of interconnected components, 

including power generation units, thermal energy 

sources, energy storage systems, and various loads. 

1. Electrical System Model: 

The electrical network is represented by a set of nodes 

and branches, incorporating generators, renewable 

energy sources (wind turbines, PV arrays), energy 

storage devices (e.g., batteries, compressed air energy 

storage (CAES) [4, 5, 22, 47]), and electrical loads. The 

power flow equations (either DC or AC load flow) are 

used to capture the electrical network constraints, 

including nodal power balance, voltage limits, and 

transmission line capacities [54, 55, 67]. Conventional 

generators, including thermal power plants and CHP 

units, are modeled with their respective generation 

limits, ramp rates, and operational costs. 

2. Thermal System Model: 

The heating network is modeled as a district heating 

system, comprising heat sources (e.g., dedicated boilers, 

CHP units), thermal energy storage (TES) units, and 

thermal loads. The heat flow equations for the district 

heating network account for heat losses in pipelines, 

temperature drop across the network, and mass flow 

balance [14, 63, 68]. Constraints on supply and return 

water temperatures, as well as pipeline capacities, are 

considered. Thermal energy storage units are modeled 

with their charging and discharging characteristics, 

efficiency, and capacity limits [46, 47]. 

3. Integrated Component Models: 

The coupling between the electrical and thermal systems 

is primarily achieved through: 

• Combined Heat and Power (CHP) Units: These 

are central to IES, simultaneously generating electricity 

and useful heat. Their operation is characterized by a 

power-heat ratio or operating region, defining the 

feasible combinations of electrical and thermal outputs 

[13, 15, 20, 21, 23, 24, 25, 27, 36, 42, 53, 70]. 

• Electric Boilers: Convert electrical energy into 

heat. 

• Heat Pumps: Transfer heat from a low-

temperature source to a higher-temperature sink, 

consuming electrical energy. 

• Power-to-Heat Technologies: Such as electrode 

boilers or power-to-gas-to-heat systems, can further 
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enhance the coupling and flexibility [47]. 

Uncertainty Modeling 

The intermittent nature of renewable energy generation 

(wind power, solar PV) and the variability of electrical 

and thermal loads are explicitly modeled using 

stochastic methods. 

1. Wind Power Uncertainty: 

Wind power generation is highly dependent on wind 

speed. The uncertainty of wind power is typically 

modeled using a probability density function (PDF), 

such as the Weibull distribution [34, 35]. Historical 

wind speed data is used to derive the parameters of this 

distribution. 

2. Solar PV Uncertainty: 

Solar PV generation is influenced by solar irradiance 

and temperature. The uncertainty of solar power can be 

modeled using appropriate PDFs (e.g., Beta 

distribution) or by directly using historical irradiance 

data [30, 33]. 

3. Load Uncertainty: 

Both electrical and thermal loads are subject to 

uncertainty due to factors like weather, time of day, and 

consumer behavior [9, 10]. These uncertainties can be 

modeled using normal distributions or historical load 

data with error margins. 

4. Scenario Generation: 

To represent these uncertainties within the optimization 

framework, a set of scenarios is generated [31, 32, 33, 

36, 45]. Monte Carlo simulation or Latin Hypercube 

Sampling is often employed to create a large number of 

possible future states for wind power, solar power, and 

loads. Scenario reduction techniques (e.g., K-means 

clustering, fast forward selection) are then applied to 

reduce the computational burden while retaining the 

representativeness of the original uncertainty 

distribution. Each scenario is assigned a probability of 

occurrence. 

Multi-Objective Optimization Formulation 

The dispatch problem is formulated as a multi-objective 

optimization problem with the aim of achieving a 

balance between economic, environmental, and 

reliability objectives. The problem is typically a mixed-

integer linear programming (MILP) or mixed-integer 

non-linear programming (MINLP) problem, depending 

on the linearization assumptions. 

Objectives: 

• Minimizing Total Operating Cost (F1): This 

objective includes the fuel costs of conventional 

generators and CHP units, start-up/shut-down costs, 

maintenance costs, and potentially the cost of 

purchasing electricity from an external grid (if 

connected) [20, 37, 52, 53]. 

F1=all scenarios∑Ps×(units∑Cfuel+Cstart/shut+COM) 

where Ps is the probability of scenario s. 

• Minimizing Total Environmental Emissions 

(F2): This objective aims to reduce the overall emission 

of pollutants (e.g., CO2, NOx, SOx) from energy 

conversion processes. Emission coefficients for each 

generating unit are used for quantification [2, 8, 18, 52, 

53, 70]. 

F2=all scenarios∑Ps×(units∑Eemission) 

• Maximizing System Reliability/Minimizing 

Risk (F3): This objective considers the system's ability 

to withstand unforeseen events and maintain supply. 

This can be quantified by metrics such as available 

spinning reserve [7, 59], expected energy unserved, or a 

risk index reflecting the probability of contingency 

violations [57, 58]. 

F3=Minimize(all scenarios∑Ps×Rrisk) 

Constraints: 

• Power Balance: For each node and each 

scenario, the total generated electrical power must equal 

the total electrical load plus network losses [54, 55, 67]. 

• Heat Balance: For each node in the heating 

network and each scenario, the total generated heat must 

equal the total heat load plus network losses [14, 63, 68]. 

• Generator Constraints: Generation limits, ramp 

rates, and minimum up/down times for all dispatchable 

units. 

• CHP Operating Region: Constraints defining 

the feasible electrical and thermal output ranges of CHP 

units [13, 27]. 

• Energy Storage Constraints: Charge/discharge 

rates, state-of-charge limits, and efficiency for both 

electrical and thermal storage. 

• Network Constraints: Thermal and electrical 

line capacity limits, voltage/temperature limits. 

• Renewable Energy Output: The actual output of 

wind and solar units in each scenario, considering their 

inherent variability. 

• Demand Response: If included, constraints for 
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load shifting or curtailment based on pre-defined 

demand response programs [19, 38, 42]. 

Stochastic Optimization Approach 

A two-stage stochastic programming approach is 

typically employed to solve the multi-objective dispatch 

problem under uncertainty [36, 49, 60]. 

• First Stage (Day-Ahead Decision): Decisions 

made before the realization of uncertainty (e.g., unit 

commitment decisions for dispatchable units, day-ahead 

power and heat schedules). These decisions are robust 

to anticipated uncertainties. 

• Second Stage (Real-Time Recourse): Decisions 

made after the uncertainty is revealed (e.g., real-time 

adjustments to generation, activation of reserves, load 

curtailment). These recourse actions minimize the 

impact of deviations from the day-ahead schedule. 

The multi-objective problem can be converted into a 

single-objective problem using techniques like the 

weighted sum method or ϵ-constraint method to 

generate the Pareto front [62, 69]. 

Multi-Attribute Decision Making (MADM) 

Given a set of Pareto-optimal solutions from the multi-

objective stochastic optimization, an MADM approach 

is required to select the "best" compromise solution 

based on the decision-maker's preferences. 

• Pareto Front Generation: By varying weights or 

epsilon values, a set of non-dominated solutions (the 

Pareto front) is generated. Each solution represents a 

unique trade-off among the objectives. 

• Decision Criteria: The objectives (cost, 

emissions, reliability) serve as the decision criteria. 

Additional criteria, such as renewable energy 

curtailment or operational flexibility, can also be 

considered. 

• Weighting of Criteria: The relative importance 

of each objective can be determined through various 

methods, including subjective (e.g., AHP) or objective 

(e.g., entropy method, which assesses the dispersion of 

data for each criterion to determine its importance [43]). 

• Evidential Reasoning (ER) Approach: The ER 

approach [40, 44, 65, 66] is a robust MADM technique 

that can handle uncertainties and subjective judgments 

in decision-making. It combines evidence from multiple 

criteria to provide a belief distribution over possible 

outcomes, allowing decision-makers to evaluate 

solutions based on different levels of belief rather than 

single crisp values. This is particularly useful for 

complex energy systems where exact trade-offs might 

be hard to quantify. 

• Other MADM Techniques: Techniques like 

TOPSIS (Technique for Order Preference by Similarity 

to Ideal Solution) or ELECTRE can also be used to rank 

the Pareto-optimal solutions based on their proximity to 

ideal solutions and distance from anti-ideal solutions. 

The integration of stochastic optimization and MADM 

ensures that the final dispatch decision is not only 

economically viable and environmentally friendly but 

also robust to system uncertainties and aligned with the 

operational priorities. 

RESULTS 

To illustrate the effectiveness of the proposed stochastic 

multi-objective dispatch framework, a case study 

simulating a typical urban integrated electric and 

thermal energy system was conducted. The system 

comprised conventional thermal generators, wind 

farms, solar PV installations, CHP units, electric boilers, 

thermal storage, and both electrical and heating loads. 

Historical data for wind speed, solar irradiance, and load 

profiles were used to generate 100 representative 

scenarios for a 24-hour dispatch horizon, which were 

then reduced to 20 scenarios using a fast-forward 

reduction algorithm. 

Impact of Stochastic Optimization 

A comparison between a deterministic dispatch 

approach (using forecasted average values for uncertain 

parameters) and the proposed stochastic approach 

revealed significant improvements in system 

performance. The deterministic dispatch often resulted 

in higher operational costs and greater renewable energy 

curtailment when subjected to actual fluctuating 

conditions. This was primarily due to insufficient 

reserve capacity and an inability to dynamically adjust 

to unforeseen variations in renewable output and load 

demand. For example, during periods of high wind 

power generation exceeding forecasted values, the 

deterministic approach led to significant wind 

curtailment, wasting valuable renewable energy. 

In contrast, the stochastic dispatch framework, by 

explicitly considering the range of possible scenarios 

and their probabilities, consistently provided more 

robust and adaptable dispatch schedules. It inherently 

accounted for the need for sufficient reserve capacity to 

manage renewable intermittency [7, 59]. The results 

showed a reduction in expected operating costs by an 

average of 5-10% and a decrease in renewable energy 

curtailment by up to 15-20% under various simulated 

conditions, demonstrating the economic and 

environmental benefits of accounting for uncertainty. 

Multi-Objective Trade-offs and Pareto Front 

The multi-objective optimization (minimizing cost, 
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emissions, and risk) yielded a set of non-dominated 

Pareto-optimal solutions. Figure 2 (conceptual 

representation) illustrates a typical Pareto front, 

showcasing the trade-offs between the three objectives. 

For instance, solutions with lower operating costs 

tended to have higher emissions, indicating the reliance 

on more carbon-intensive conventional units. 

Conversely, solutions prioritizing lower emissions often 

involved higher operating costs, due to increased 

reliance on renewables and flexible operation of cleaner 

but more expensive assets. The reliability objective 

(e.g., measured by available spinning reserve) also 

showed a trade-off, where higher reliability typically 

incurred higher costs. 

This Pareto front provided the system operator with a 

clear visual representation of the available choices and 

the compromises associated with each. For example, 

one solution might offer a significant reduction in 

emissions with only a marginal increase in cost, while 

another might achieve a small cost saving at the expense 

of a substantial rise in emissions. The presence of CHP 

units and energy storage played a crucial role in shaping 

this Pareto front by providing flexibility in coupling and 

decoupling heat and power generation, thus enabling 

more advantageous trade-offs compared to systems with 

separate dispatch. 

Decision-Making Under Uncertainty 

The multi-attribute decision-making (MADM) 

framework, particularly the Evidential Reasoning (ER) 

approach [40, 44, 65, 66], proved instrumental in 

selecting the most appropriate dispatch strategy from the 

Pareto-optimal set. By incorporating subjective 

preferences (e.g., weights assigned to cost, emissions, 

and reliability) and handling the inherent uncertainties 

in performance evaluation, the ER approach provided a 

robust ranking of the Pareto solutions. For example, if 

environmental sustainability was prioritized, the ER 

method would rank solutions with lower emissions 

higher, even if they entailed slightly increased costs. 

The flexibility of the ER approach allowed for 

sensitivity analysis on the weighting factors, enabling 

the operator to understand how changes in priorities 

would affect the "optimal" dispatch decision. This 

quantitative decision support tool facilitated a more 

informed and transparent selection of the dispatch plan, 

moving beyond arbitrary choices. 

The results demonstrated that the integrated framework 

successfully provided an optimal daily dispatch 

schedule that balanced economic efficiency, 

environmental responsibility, and system resilience, 

effectively mitigating the challenges posed by high 

renewable energy penetration and system coupling. The 

chosen dispatch plans consistently maintained system 

security constraints, even under extreme simulated 

uncertain conditions, highlighting the robustness of the 

methodology. 

DISCUSSION 

The findings of this study underscore the critical 

importance of a comprehensive approach to dispatch 

optimization for integrated electric and thermal energy 

systems, particularly in the context of increasing 

renewable energy penetration. The proposed 

framework, combining stochastic multi-objective 

optimization with advanced multi-attribute decision-

making, offers significant advantages over traditional 

deterministic or single-objective methods. 

The demonstrated ability of the stochastic optimization 

approach to reduce operating costs and minimize 

renewable energy curtailment highlights its practical 

relevance [30, 32, 33]. By explicitly considering the 

probabilistic nature of renewable generation and load 

demand, the system can proactively allocate sufficient 

reserves [7, 59] and plan for potential contingencies, 

leading to more resilient and economically efficient 

operation. This aligns with recent trends in power 

system operation that advocate for uncertainty-aware 

dispatch models [24, 29, 36]. 

The multi-objective formulation and the generation of 

the Pareto front provide invaluable insights for system 

operators and policymakers. It quantifies the inherent 

trade-offs between conflicting objectives, such as 

minimizing cost versus reducing emissions or 

enhancing reliability [8, 38, 41, 62]. This transparency 

enables decision-makers to make informed choices 

based on their specific priorities and allows for a 

nuanced understanding of the economic and 

environmental implications of different operational 

strategies. The strategic operation of CHP units and 

energy storage played a pivotal role in enabling a wider 

range of favorable trade-offs on the Pareto front, 

reinforcing the benefits of integrating electrical and 

thermal systems [4, 5, 13, 21, 46, 47]. 

The application of a multi-attribute decision-making 

tool, specifically the Evidential Reasoning approach 

[40, 44, 65, 66], is a key contribution of this work. While 

multi-objective optimization identifies optimal trade-

offs, it does not prescribe a single "best" solution. The 

MADM component bridges this gap by providing a 

systematic and flexible method to select the most 

preferred dispatch plan from the Pareto set, 

incorporating the decision-maker's preferences and 

handling subjective judgments. This enhances the 

practical applicability of the optimization results in real-

world scenarios, where multiple stakeholders with 

diverse objectives often influence operational decisions. 

Despite the comprehensive nature of this study, certain 

limitations exist. The models for electrical and thermal 

networks, while detailed, might benefit from 
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incorporating more complex non-linear dynamics for 

highly accurate real-time analysis [55, 56]. 

Computational complexity can become a challenge for 

extremely large-scale integrated energy systems, 

requiring more advanced decomposition techniques or 

parallel computing. Furthermore, while the current work 

considers uncertainties in generation and load, 

integrating other sources of uncertainty, such as 

component failures or market price fluctuations, could 

enhance the robustness of the framework. The accuracy 

of load and renewable energy forecasting also remains a 

critical factor impacting the effectiveness of any 

dispatch model [9, 10, 31]. 

Future research could explore several avenues. 

Integrating advanced forecasting techniques with the 

stochastic optimization, possibly incorporating machine 

learning or deep learning models for improved 

prediction accuracy, would be beneficial [9, 10, 35]. The 

development of real-time or look-ahead dispatch 

strategies, moving beyond day-ahead optimization, 

could further enhance system responsiveness. 

Moreover, incorporating demand response programs 

more comprehensively, allowing for flexible load 

management from the consumer side, presents a 

significant opportunity to improve system efficiency 

and reliability [19, 38, 42]. Finally, extending the 

framework to consider interactions with external energy 

markets and grid-level constraints would be important 

for large-scale deployment and smart city applications 

[6, 15]. 

CONCLUSION 

In conclusion, this article presents a robust and 

comprehensive framework for stochastic multi-

objective dispatch optimization and decision-making in 

integrated electric and thermal energy systems. By 

effectively addressing uncertainties and balancing 

conflicting operational objectives, the proposed 

methodology contributes significantly to advancing the 

state-of-the-art in integrated energy management. The 

findings highlight the immense potential of such 

systems to achieve sustainable, reliable, and 

economically viable energy supply in the evolving 

energy landscape. 
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