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ABSTRACT 

 
The global energy landscape is undergoing a significant transformation, driven by concerns over climate change and the 
depletion of fossil fuels. Hybrid renewable energy systems (HRES), combining sources like solar photovoltaic (PV) and 
wind power with energy storage, offer a promising solution to enhance energy security and reduce carbon emissions. 
When integrated with smart grid technologies and connected to the main grid, these systems can provide reliable, 
sustainable, and economically viable power. This article presents a detailed feasibility analysis of grid-tied smart HRES 
through optimal sizing under various weather conditions. It reviews existing methodologies, discusses critical 
components and objective functions, and highlights the application of meta-heuristic optimization algorithms to achieve 
cost-effective and reliable system designs. The findings emphasize the crucial role of accurate resource assessment and 
robust optimization techniques in realizing the full potential of these advanced energy systems across diverse climatic 
zones. 

Keywords: Smart hybrid energy systems; grid-connected systems; renewable energy integration; climatic zone analysis; 
techno-economic feasibility; solar-wind hybrid; energy optimization; sustainable energy planning; smart grid; decentralized 
power systems. 

 

INTRODUCTION 

The escalating demand for energy, coupled with pressing 

environmental concerns, has accelerated the global 

transition towards sustainable energy sources [3]. 

Traditional fossil fuel-based power generation systems 

contribute significantly to greenhouse gas emissions, 

necessitating a shift towards cleaner alternatives. 

Renewable energy sources (RES) such as solar 

photovoltaic (PV) and wind power have emerged as 

leading contenders due to their environmental benefits 

and decreasing costs [4]. However, the inherent 

intermittency and variability of individual RES pose 

significant challenges to grid stability and reliability. 

Hybrid renewable energy systems (HRES), which 

integrate two or more RES, often coupled with energy 

storage systems (ESS) like batteries, offer a robust 

solution to mitigate these limitations by providing a more 

consistent and reliable power supply [1]. 

The integration of HRES with the existing electrical grid, 

forming grid-tied systems, further enhances their viability 

by allowing excess power to be fed into the grid and 

drawing power when RES generation is insufficient. This 

grid-connected configuration provides enhanced 

reliability, economic benefits through reduced reliance on 

fossil fuels, and a pathway for distributed generation [15, 

17]. Furthermore, the advent of smart grid technologies 

plays a pivotal role in optimizing the operation and 

management of these complex systems. Smart grids 

facilitate efficient energy management, demand response 

mechanisms, and real-time monitoring, enabling a more 

dynamic and responsive energy infrastructure [7, 8]. 
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Figure 1. Schematic diagram of On–off-grid Op-HRES design and components. 

Optimal sizing of HRES components is a critical step in 

the design process, as it directly impacts the system's 

technical feasibility, economic viability, and 

environmental performance. Improper sizing can lead to 

either an unreliable system (undersizing) or an 

economically inefficient one (oversizing) [1]. The 

challenge lies in determining the precise capacities of PV 

panels, wind turbines, battery banks, and other 

components (such as fuel cells or diesel generators in 

more complex setups) that meet the load demand 

reliably while minimizing costs over the system's lifetime 

and reducing carbon footprints. This optimization must 

consider the highly variable nature of renewable 

resources, which fluctuate significantly with weather 

conditions across different geographical locations [24]. 

Numerous methodologies, including analytical, 

numerical, and meta-heuristic approaches, have been 

proposed for the optimal sizing of HRES [1, 9]. Recent 

advancements in computational intelligence and 

optimization algorithms have provided powerful tools to 

tackle the complex, non-linear optimization problems 

associated with HRES sizing. This article aims to assess 

the feasibility of grid-tied smart HRES by exploring 

optimal sizing strategies under various weather 

conditions, drawing upon a comprehensive review of 

relevant literature to highlight key considerations and 

methodologies. 

2. METHODS 

The methodology for assessing the feasibility of a grid-

tied smart hybrid power system through optimal sizing 

under various weather conditions typically involves 

several key steps: system architecture definition, 

component modeling, objective function formulation, 

constraint definition, data acquisition, and the 

application of optimization algorithms. 

2.1. System Architecture 

A typical grid-tied smart HRES considered for optimal 

sizing includes: 

• Solar Photovoltaic (PV) Array: Converts sunlight 

directly into electricity. Its output depends on solar 

irradiance and temperature [36]. 

• Wind Turbine(s): Converts wind energy into 

electricity. Power output is highly dependent on wind 

speed [1]. 

• Battery Energy Storage System (BESS): Stores 

excess electricity generated by RES for later use, 

enhancing system reliability and managing intermittency. 

• Grid Connection: Allows bidirectional power flow – 

exporting surplus renewable energy to the main grid and 

importing power when generation is insufficient to meet 

demand. This reduces the need for large battery banks and 

improves overall system reliability [17]. 

• Power Converters/Inverters: Convert DC power 

from PV and batteries to AC power for load consumption 

and grid integration. 

• Smart Grid Infrastructure: Includes advanced 

metering infrastructure (AMI), communication networks, 

and control systems to manage energy flow, implement 

demand response, and ensure grid stability [8]. 

• Optional Components: Depending on the specific 

application, the system may also include diesel generators 

[21, 45], fuel cells [16, 29, 30], or biomass generators [18, 

37, 40] to enhance reliability or provide baseload power. 

2.2. Component Modeling 

Accurate modeling of each component is crucial for 

realistic system simulation and optimization: 
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• PV Model: The power output of a PV panel is 

typically modeled as a function of solar irradiance and 

ambient temperature, taking into account factors like 

panel efficiency, array size, and derating factors. 

• Wind Turbine Model: The power curve of a wind 

turbine relates its electrical output to wind speed, 

typically characterized by cut-in, rated, and cut-out 

speeds. 

• Battery Model: Battery models account for 

charging/discharging efficiencies, state of charge (SOC) 

limits, capacity degradation, and lifespan. 

• Load Demand Profile: Historical or projected 

hourly load demand data is essential to match generation 

with consumption. 

• Grid Interaction: Modeled to account for 

electricity purchase and sale prices, which can vary based 

on time-of-use (ToU) tariffs or other grid policies. 

2.3. Objective Function Formulation 

The primary objective of optimal sizing is typically to 

minimize total system cost while ensuring reliable power 

supply. Common objective functions include: 

• Minimization of Total Net Present Cost (NPC) or 

Levelized Cost of Energy (LCOE): This accounts for initial 

capital costs, operation and maintenance (O&M) costs, 

replacement costs, fuel costs (if applicable), and salvage 

value over the system's lifetime, discounted to a present 

value [20, 34]. 

• Minimization of Emissions: Reducing greenhouse 

gas emissions (e.g., CO2) is another critical objective, 

especially in systems incorporating fossil fuel generators. 

• Multi-objective Optimization: Some studies 

consider a combination of economic, environmental, and 

technical objectives simultaneously, such as minimizing 

LCOE and CO2 emissions while maximizing system 

reliability [6, 14, 23, 38]. 

2.4. Constraints 

Various technical, economic, and environmental 

constraints must be satisfied during the optimization 

process: 

• Power Balance Constraint: At every time step, the 

total power generated by the HRES and/or imported 

from the grid must meet the load demand. 

• Battery SOC Limits: The battery's state of charge 

must remain within specified minimum and maximum 

limits to prevent overcharging or deep discharging, 

which can damage the battery. 

• Component Size Limits: Practical limits on the 

number of PV panels, wind turbines, and battery 

capacity. 

• Loss of Power Supply Probability (LPSP): For 

stand-alone systems or reliability analysis of grid-tied 

systems, LPSP is a crucial metric, representing the 

probability that the load demand cannot be fully met by 

the system [9, 35]. For grid-tied systems, this often 

translates to minimizing grid reliance. 

• Grid Stability Constraints: For smart grid 

integration, voltage stability, frequency stability, and 

power quality constraints may need to be considered [8]. 

2.5. Data Acquisition 

Accurate meteorological and load data are paramount for 

realistic simulations: 

• Solar Irradiance and Temperature Data: Obtained 

from meteorological stations or online databases like 

NASA POWER [44]. 

• Wind Speed Data: Also sourced from 

meteorological stations or specific height wind maps [1]. 

• Load Profile Data: Typically hourly or sub-hourly 

data representing the electricity consumption of the target 

site (e.g., residential, commercial, rural community) [20, 

27]. 

• Economic Parameters: Component costs, O&M 

costs, fuel prices, inflation rates, interest rates, and grid 

electricity tariffs. 

2.6. Optimization Algorithms 

Due to the complex, non-linear, and often multi-modal 

nature of HRES sizing problems, meta-heuristic 

optimization algorithms are widely employed. These 

algorithms explore a vast search space to find near-

optimal solutions. Examples include: 

• Genetic Algorithm (GA): A population-based search 

algorithm inspired by natural selection [9]. 

• Particle Swarm Optimization (PSO): A 

computational method that optimizes a problem by 

iteratively trying to improve a candidate solution with 

regard to a given measure of quality [29]. 

• Simulated Annealing (SA): A probabilistic 

technique for approximating the global optimum of a given 

function [11]. 

• Cuckoo Search (CS): Inspired by the brood 

parasitism of some cuckoo species [10, 39]. 

• Grey Wolf Optimizer (GWO): Mimics the hunting 

mechanism and social hierarchy of grey wolves [13, 14]. 

• Whale Optimization Algorithm (WOA): Inspired by 

the bubble-net hunting strategy of humpback whales [12]. 

• Marine Predators Algorithm (MPA): Based on the 

foraging strategy of marine predators [16]. 

• Seagull Optimization Technique: Inspired by the 

migratory and attacking behavior of seagulls [17]. 
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• Chameleon Swarm Algorithm: A newer algorithm 

inspired by the hunting behavior of chameleons [26]. 

• Jaya-Harmony Search and Ant Colony 

Optimization: Used for stand-alone system design [25]. 

• Zebra Optimization Algorithm (ZOA) and Atom 

Search Optimization (ASO): Recently developed meta-

heuristic algorithms demonstrating promising 

performance in various optimization problems [41, 42, 

43]. 

• Farmland Fertility Optimization Algorithm: A 

novel algorithm applied to grid-connected HRES sizing 

[30]. 

These algorithms are often implemented in software 

tools or custom simulation environments to evaluate 

various system configurations against the defined 

objective function and constraints under different 

weather scenarios [23, 45]. The process typically 

involves simulating the HRES operation over a typical 

year (e.g., hourly data for 8760 hours) to capture the 

seasonal and daily variations in RES output and load 

demand. 

3. RESULTS 

The application of optimal sizing methodologies for grid-

tied smart hybrid power systems yields a range of crucial 

results that demonstrate their feasibility across diverse 

climatic zones. The outcomes typically encompass the 

optimal component capacities, detailed economic 

assessments, reliability indicators, and environmental 

benefits. 

3.1. Optimal System Configuration 

For each distinct weather condition or geographical 

location analyzed, the optimization process identifies the 

ideal combination of system components. For instance, in 

regions with high solar irradiance, the optimal sizing 

tends to favor a larger PV array, while in windy areas, 

wind turbines contribute more significantly to the overall 

power generation. The capacity of the battery energy 

storage system (BESS) is determined by the 

intermittency of the local renewable resources and the 

grid's ability to absorb or provide power. For grid-tied 

systems, the BESS size might be smaller compared to 

standalone systems, as the grid acts as a large virtual 

battery, balancing supply and demand [31]. However, 

BESS remains crucial for managing short-term 

fluctuations and optimizing energy arbitrage. 

Studies have shown that the optimal mix of PV, wind, and 

storage components varies significantly depending on 

local resource availability. For example, a system 

optimized for a desert region will have a different PV-to-

wind ratio than one for a coastal area. The specific meta-

heuristic algorithm employed also influences the exact 

"optimal" solution found, as different algorithms have 

varying exploration and exploitation capabilities [23, 45]. 

3.2. Economic Feasibility 

Economic metrics are central to assessing feasibility. The 

optimization aims to minimize the Levelized Cost of 

Energy (LCOE) or Net Present Cost (NPC) over the project 

lifetime. Results consistently demonstrate that optimally 

sized grid-tied HRES can achieve competitive LCOE values, 

making them economically attractive compared to 

traditional fossil fuel-based generation or even single-

source renewable systems [17, 20]. The ability to sell 

excess renewable energy to the grid (feed-in tariffs) and 

purchase electricity during low generation periods 

significantly enhances the economic viability, reducing the 

need for oversized renewable generators or storage 

capacities [27]. 

For instance, studies on grid-tied HRES for rural 

electrification have shown favorable economic outcomes, 

indicating their potential to provide cost-effective energy 

access [15, 38]. The economic performance is highly 

sensitive to fluctuating energy prices, initial investment 

costs, and governmental incentives or subsidies. The 

inclusion of smart grid functionalities, enabling demand 

response and real-time energy trading, can further reduce 

operational costs and maximize revenue streams for the 

system operator [6]. 

3.3. Technical Performance and Reliability 

The technical results confirm the system's ability to 

reliably meet the load demand. For grid-tied systems, 

reliability is often measured by metrics such as the total 

energy exchanged with the grid or the amount of unmet 

load (if any, typically minimized to zero). The optimal 

sizing ensures that the system's components work in 

synergy to provide a stable power supply, even during 

periods of low renewable resource availability [24]. The 

dispatch strategy, optimized within the smart grid 

framework, intelligently manages power flow between the 

RES, battery, load, and grid, prioritizing renewable energy 

utilization and minimizing grid dependence or maximizing 

grid export revenue. 

In scenarios where backup generators (e.g., diesel) are 

included, the optimization results quantify their reduced 

operational hours and fuel consumption, demonstrating 

the primary role of renewables [21]. The optimal sizing 

also considers the Loss of Power Supply Probability 

(LPSP) or other reliability indices, ensuring that the 

system meets predefined reliability targets while 

minimizing capital expenditure [9, 35]. 

3.4. Environmental Impact 

Beyond economic and technical performance, the 

environmental benefits of optimally sized grid-tied HRES 

are significant. The results typically show a substantial 

reduction in carbon dioxide (CO2) emissions compared to 

conventional power generation mixes [4, 38]. By 

maximizing the utilization of clean energy sources and 

minimizing the operational hours of fossil fuel-based 
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backups, these systems contribute directly to climate 

change mitigation efforts. The environmental benefits 

are particularly pronounced when the HRES replaces 

existing grid electricity generated from high-carbon 

sources. 

4. DISCUSSION 

The results of optimal sizing analyses consistently 

highlight the technical, economic, and environmental 

feasibility of grid-tied smart hybrid power systems 

across various climatic conditions. The inherent 

variability of renewable resources necessitates a 

comprehensive approach that integrates diverse energy 

sources and robust energy storage solutions, while smart 

grid technologies provide the intelligence for efficient 

management. 

The critical role of accurate resource assessment cannot 

be overstated. The availability of reliable, site-specific 

solar irradiance and wind speed data (e.g., from NASA 

POWER [44]) is fundamental to achieving accurate sizing 

and predicting system performance. The significant 

variations in optimal configurations across different 

geographical locations underscore the need for 

customized design rather than a one-size-fits-all 

approach. For instance, a system optimized for a high-

irradiance, low-wind desert environment will markedly 

differ from one designed for a windy coastal region [24]. 

Economically, the drive towards minimizing LCOE or 

NPC is a central theme in HRES optimization [17, 20]. The 

economic viability of grid-tied systems is often superior 

to standalone systems, primarily due to the grid's ability 

to absorb excess generation and provide backup, thereby 

reducing the required battery capacity and improving the 

capacity factor of renewable assets [27, 31]. Government 

policies, feed-in tariffs, carbon pricing, and demand 

response programs significantly influence the economic 

attractiveness and deployment rates of these systems [6]. 

Continued cost reductions in PV panels, wind turbines, 

and battery technologies further enhance their 

competitiveness [4]. 

Technically, the successful integration of HRES into 

smart grids is crucial for realizing their full potential. 

Smart grid functionalities enable sophisticated energy 

management strategies, including optimal dispatch 

schedules, demand-side management, and ancillary 

services, which contribute to grid stability and efficiency 

[8, 33]. The choice of optimization algorithm is also a 

critical factor; while traditional methods exist, the 

increasing complexity of HRES sizing problems has led to 

widespread adoption of meta-heuristic algorithms [1]. 

Algorithms like Grey Wolf Optimizer, Particle Swarm 

Optimization, and more recent ones like Zebra 

Optimization Algorithm or Atom Search Optimization, 

offer powerful tools for navigating complex search 

spaces and finding near-optimal solutions [13, 14, 41, 42, 

43, 45]. However, the performance of these algorithms 

can vary, and future research may explore hybrid 

algorithms or adaptive meta-heuristics to improve 

convergence speed and global optimality [23]. 

Despite the promising findings, certain limitations and 

areas for future research persist. Most studies focus on a 

specific set of renewable technologies and storage options. 

Future work could explore the integration of emerging 

technologies such as advanced fuel cells for hydrogen 

production and storage [5, 28] or more sophisticated 

pumped-hydro storage systems [19]. Furthermore, while 

optimal sizing is essential, the long-term degradation of 

components, particularly batteries, and the impact of 

extreme weather events or climate change scenarios are 

areas that require more in-depth modeling and 

uncertainty analysis. The complexities of grid code 

compliance and regulatory frameworks for grid-tied 

systems also warrant further investigation, especially in 

diverse international contexts. Finally, integrating socio-

economic factors and public acceptance into the multi-

objective optimization framework could provide a more 

holistic assessment of feasibility. 

5. CONCLUSION 

The assessment of grid-tied smart hybrid power systems 

through optimal sizing under various weather conditions 

unequivocally demonstrates their significant potential for 

contributing to a sustainable and resilient energy future. 

By synergistically combining solar and wind power with 

energy storage and integrating with smart grid 

infrastructure, these systems offer a robust solution to the 

intermittency of individual renewable sources and the 

challenges of meeting growing energy demands. Optimal 

sizing, facilitated by advanced meta-heuristic algorithms, 

ensures that these systems are not only technically 

reliable but also economically viable and environmentally 

beneficial, leading to reduced carbon emissions and lower 

energy costs over their operational lifetimes. Continued 

research and development in component technologies, 

optimization methodologies, and smart grid integration 

will further enhance the widespread adoption and 

effectiveness of these advanced energy solutions across 

the globe. 
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