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ABSTRACT

Background: The core-periphery (C-P) structure is a fundamental feature of complex networks, yet its
characterization remains a significant challenge. Existing methods often impose a discrete partition on the network,
classifying nodes as either core or periphery, which oversimplifies the diverse and continuous roles nodes can play.
Methods: We propose a novel framework for a more nuanced C-P characterization. First, we introduce a
"Neighborhood-based Bridge Node Centrality" metric, designed to quantify the extent to which a node connects its
local neighborhood to the wider network. We then apply Principal Component Analysis (PCA) to a node-feature
matrix derived from this metric. The resulting principal components provide a low-dimensional embedding where
nodes are positioned based on their topological roles. A clustering algorithm is then used on this embedding to
identify core, periphery, and intermediate structures.

Results: On synthetic networks with known C-P structures, our framework demonstrates high accuracy. When
applied to real-world networks, including a jazz musician collaboration network, it reveals a continuous spectrum of
"coreness" and effectively identifies bridge nodes that are critical for network cohesion. A comparative analysis
shows our method provides a richer characterization than traditional approaches based on discrete optimization and
spectral methods.

Conclusion: The proposed PCA framework offers a flexible, interpretable, and powerful tool for analyzing core-
periphery structures. By moving beyond a binary classification, it provides deeper insights into the complex topology
of networks, with significant implications for understanding dynamics like influence spreading and system resilience.

KEYWORDS

Network Science, Core-Periphery Structure, Principal Component Analysis (PCA), Node Centrality, Community
Detection, Topological Data Analysis.

INTRODUCTION
networks is far from random; it encodes fundamental

1.1 The Importance of Network Topology

Networks provide a powerful mathematical framework
for representing and analyzing complex systems across a
vast range of scientific and societal domains. From the
intricate web of protein-protein interactions within a cell
to the global connectivity of the internet, and from the
delicate structure of financial markets to the patterns of
social relationships that govern our lives, the paradigm of
nodes and edges has become an indispensable tool for
discovery [4]. The structure, or topology, of these
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information about the system's function, its resilience to
failure, its efficiency in transport and communication,
and the dynamics of processes that unfold upon it, such
as the spread of information or disease. Understanding
this topology is therefore not merely an academic
exercise in graph theory, but a critical prerequisite for
predicting, controlling, and designing complex systems.

A key insight from decades of network science research
is that the functionality of a network is profoundly shaped
by its mesoscale organization—patterns of connectivity
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that are neither local (involving single nodes and their
immediate neighbors) nor global (involving the entire
network), but exist at an intermediate level. These
mesoscale structures, which include communities,
modules, and hierarchical arrangements, often
correspond to functional units within the system. One of
the most ubiquitous and functionally significant of these
structures is the core-periphery (C-P) topology.

1.2 Core-Periphery Structures

A core-periphery structure is, in its idealized form, a
network topology characterized by a dense, cohesive
group of nodes—the core—and a sparse, loosely
connected set of nodes—the periphery—that is primarily
connected to the core rather than to itself [3]. The nodes
within the core are numerous and have a high density of
internal connections, forming a stable and integrated
center. In contrast, nodes in the periphery are few,
sparsely interconnected, and their primary linkage to the
network is through connections with core nodes. This
arrangement has profound implications for network
processes. The core often acts as a central hub for
information processing and distribution, a bastion of
stability and resilience, and a dominant influence on
network-wide dynamics. The periphery, while less
integrated, can serve as a source of novelty and
adaptation, a gateway to other networks, or, in some
contexts, a population susceptible to influences
emanating from the core.

The functional importance of C-P structures has been
documented across numerous fields. In social networks,
a core of dedicated activists can be essential for the initial
survival and coordination of a social movement, while a
"critical periphery" of more loosely engaged individuals
can determine whether the movement achieves
widespread growth and impact [1]. In transportation and
communication networks, a well-defined core ensures
efficient long-distance transit, while the periphery
handles local distribution. In economic networks, core
financial institutions or industries often dominate the
flow of capital and resources, with peripheral entities
being more specialized and dependent. The concept of a
dominant, central component is also echoed in other
graph-theoretic problems, such as the search for a
minimum dominating set, where a subset of nodes is
chosen to "cover" the entire graph, conceptually akin to a
functional core [13].

Recently, the traditional, monolithic view of C-P
structure has been refined. Gallagher et al. [9] proposed a
clarified typology that moves beyond the simple core-or-
periphery dichotomy. They identify four distinct types of
C-P structures based on the relative richness of
connections within the core, within the periphery, and
between the two groups. This work highlights the need
for methods that can capture the nuances of these
different configurations, as the functional implications of
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a network with a rich-club core and an isolated periphery
are vastly different from one where the periphery is also
richly connected to the core. This evolving understanding
underscores the limitations of methods that impose a
strict binary classification and motivates the development
of more flexible and descriptive analytical frameworks.

1.3 Existing Detection Methods and Their Limitations

The task of identifying C-P structures in real-world
networks is non-trivial. A variety of computational
methods have been developed, each with its own
strengths and weaknesses. One of the pioneering
approaches, proposed by Borgatti and Everett [3], is a
discrete optimization method. This method attempts to
find a partition of nodes into a core set and a periphery
set that maximizes a quality function. This function is
typically based on the ideal C-P blockmodel, where the
core sub-matrix is filled with ones (or high values), the
periphery-periphery sub-matrix is filled with zeros (or
low values), and the core-periphery blocks have some
intermediate density. While foundational, this approach
is computationally expensive (often NP-hard), forcing
reliance on heuristics, and it fundamentally assumes a
discrete, binary partition, which may not accurately
reflect the continuous nature of node roles in many
networks.

Another class of methods leverages the dynamics of
processes on the network. For instance, Della Rossa et al.
[8] introduced a method based on random walkers. The
intuition is that walkers will tend to get "trapped" for
longer periods within the dense core. By analyzing the
stationary distribution or return times of random walks,
one can derive a "coreness" score for each node. These
methods are elegant and often computationally efficient,
but their results can be sensitive to the specific dynamics
chosen, and they may still produce a single scalar value
of coreness that struggles to capture the multifaceted
roles nodes can play.

More recently, spectral methods have gained popularity
due to their computational efficiency and mathematical
elegance [6]. These methods typically analyze the
eigenvectors of a network's adjacency or Laplacian
matrix. For example, Cucuringu et al. [6] developed a
spectral algorithm that uses the principal eigenvector of a
specific matrix to order the nodes from most peripheral
to most core-like. While powerful and scalable, spectral
methods have their own limitations. The interpretation of
eigenvectors beyond the first one can be challenging, and
like random walk methods, they often collapse a node's
complex structural position into a single dimension,
making it difficult to distinguish between different types
of non-core nodes (e.g., a truly isolated peripheral node
versus a "bridge" node that connects the core to a
peripheral cluster). Furthermore, their performance can
degrade in networks that deviate significantly from the
idealized C-P model.
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A common thread among these limitations is a tendency
towards simplification. By forcing a discrete partition or
calculating a single coreness score, existing methods risk
obscuring  the rich, continuous, and often
multidimensional spectrum of roles that nodes occupy. A
node is not simply "core" or "periphery"; it may be a
central member of the core, a peripheral member of the
core, a bridge connecting the core to the periphery, a local
hub within the periphery, or a truly isolated singleton.
Capturing this diversity is essential for a deeper
understanding of network function.

1.4 The Proposed Approach

This paper introduces a novel framework to address these
limitations and provide a more granular, interpretable,
and multidimensional characterization of core-periphery
structures. Our approach is built upon two key
innovations.

First, we propose a new node-level metric called
Neighborhood-based Bridge Node Centrality (NBNC).
Unlike traditional centrality measures that focus purely
on connectivity (degree) or path-based importance
(betweenness), NBNC is specifically designed to
guantify the dual role a node plays in terms of its local
neighborhood cohesion and its capacity to act as a bridge
to other parts of the network. It distinguishes between
nodes embedded deep within a dense cluster and those
whose neighborhoods serve as conduits between
different regions, a critical feature for identifying
intermediate or bridging roles between the core and
periphery.

Second, we leverage Principal Component Analysis
(PCA), a powerful and well-established technique for
dimensionality reduction and data exploration [14], as the
core of our analytical framework. Instead of calculating a
single score for each node, we first compute the NBNC
metric (and potentially other local features) for every
node in the network. We then treat the nodes as data
points in a high-dimensional feature space and apply
PCA to project them onto a lower-dimensional space
defined by the principal components. These components,
being orthogonal linear combinations of the original
features, represent the most significant axes of variation
in the nodes' structural properties.

This PCA-based embedding provides a rich "map" of the
network’s C-P topology. Rather than a binary label, each
node receives a coordinate in this new space. We
hypothesize that the first principal component will often
correspond to the classic core-to-periphery axis, while
subsequent components will reveal more subtle structural
roles, effectively separating "bridge” nodes from
"isolated" peripheral nodes. By analyzing the positions
and clustering of nodes in this space, we can move
beyond a simple partition and towards a more
comprehensive characterization, aligning with the
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nuanced typologies proposed by recent work [9].
1.5 Research Questions and Paper Structure

This study is guided by the following primary research
questions:

1. Can the proposed Neighborhood-based Bridge
Node Centrality metric effectively capture the structural
properties required to differentiate between core,
periphery, and intermediate bridge nodes?

2. Does the application of Principal Component
Analysis to neighborhood-based features provide a more
descriptive and interpretable characterization of core-
periphery structure than existing methods?

3. How does the proposed framework perform in
identifying and classifying nodes in both synthetic
networks with known ground truths and diverse real-
world networks?

The remainder of this paper is structured as follows.
Section 2 provides a detailed description of the
methodology, including the formal definition of the
NBNC metric and the step-by-step implementation of the
PCA framework. Section 3 presents the results of our
experiments on both synthetic and real-world networks,
including a comparative analysis against established
baseline methods. Section 4 discusses the interpretation
and implications of these results, highlighting the
framework's ability to offer a nuanced view of C-P
structure and the specific roles of bridge nodes. Finally,
Section 5 concludes the paper, summarizing our
contributions and suggesting directions for future
research.

METHODOLOGY

This section details the proposed framework for
characterizing core-periphery structures. We begin with
formal definitions of the network concepts used. We then
introduce the novel Neighborhood-based Bridge Node
Centrality (NBNC) metric, which forms the basis of our
analysis. Following this, we describe the application of
Principal Component Analysis (PCA) to create a low-
dimensional embedding of the nodes. Finally, we outline
the clustering procedure used to identify structural roles
and describe the experimental setup for validating our
method.

2.1 Preliminaries

We consider an unweighted, undirected graph G=(V,E),
where V is the set of n=|V| nodes (or vertices) and E is
the set of m=|E| edges (or links) connecting pairs of
nodes. The adjacency matrix of the graph is an ntimesn
matrix A, where A_ij=1 if an edge exists between node i
and node j, and A_ij=0 otherwise.

pg. 3


https://aimjournals.com/index.php/ijngets

INTERNATIONAL JOURNAL OF NEXT-GENERATION
ENGINEERING AND TECHNOLOGY (IINGET)

The neighborhood of a node i, denoted N(i), is the set of
nodes directly connected to i: N(i)=jinVIA ij=1. The
degree of node i, denoted k_i, is the size of its
neighborhood: k_i=|N(i)l.

The subgraph induced by the neighborhood of node i,
denoted G[N(i)], consists of the nodes in N(i) and all
edges from E that connect any two nodes within N(i). The
number of edges in this subgraph is given by
m_i=frac12sum_jinN(i)sum_linN(i)A_jl.

2.2 The Proposed Metric:
Bridge Node Centrality (NBNC)

Neighborhood-based

The central innovation of our feature engineering is the
Neighborhood-based Bridge Node Centrality (NBNC).
This metric is designed to move beyond simple degree
counts or global path-based measures. It quantifies a
node's structural role by simultaneously considering two
critical aspects: the internal cohesion of its local
neighborhood and the external connectivity of that
neighborhood to the rest of the graph. The intuition is that
a node's function is determined not just by how many
connections it has, but also by how its neighbors are
connected to each other and to the wider network.

The NBNC for a node i is defined as the product of two
components: the Local Cohesion Coefficient (textLCC_i)
and the Neighborhood Bridging Factor (textNBF_i).

NBNC(i)=LCCixNBFi
2.2.1 Local Cohesion Coefficient (textLCC i)

The LCC measures how densely interconnected the
neighbors of node i are. It is closely related to the local
clustering coefficient. For a node i with degree k i1, the
maximum possible number of edges between its
neighbors is binomk i2=frack i(k_i—1)2. The LCC is the
ratio of the actual number of edges in the induced
neighborhood subgraph, m_i, to this maximum possible
number.

LCCi={ki(ki—1)2mi0Oif ki>1if ki<l

A high textLCC i indicates that node i is part of a tightly-
knit community or clique-like structure. Nodes deep
within a network core are expected to have a high LCC.
Conversely, a low textLCC_i suggests that node i sits in
a sparse, tree-like region of the network, which is
characteristic of peripheral nodes.

2.2.2 Neighborhood Bridging Factor (textNBF _i)

The NBF is designed to capture the extent to which a
node’s neighborhood serves as a bridge to distinct, remote
parts of the network. To compute this, we consider the set
of nodes at distance 2 from node i, which are the
neighbors of its neighbors, excluding i itself and its
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immediate neighbors. Let this set be
N_2(i)=vinVsetminus(N(i)cupi)|existsjinN(i)texts.t.A_j
v=1.

The NBF quantifies the "reach" of the neighborhood N(i)
into this second-order neighborhood N_2(i). A simple
count of nodes in N_2(i) is insufficient, as it would be
highly correlated with degree. Instead, we measure the
number of nodes in N(i) that are required to "dominate"
or reach all nodes in N_2(i). A node jinN(i) is said to
reach a node vinN_2(i) if an edge (j,v) exists. We seek
the size of the smallest subset of N(i), let's call it $S\_i™*
\\subseteq N(i)$, such that every node in N_2(i) is
adjacent to at least one node in $S\ i™*$. This is
precisely the set cover problem on the bipartite graph
between N(i) and N_2(i), which is a classic NP-hard
problem.

Given the computational complexity of finding the exact
minimum set cover [5, 13], we employ a standard greedy
algorithm for an efficient approximation. The algorithm
iteratively selects the node in N(i) that covers the most
yet-uncovered nodes in N_2(i) until all nodes in N_2(i)
are covered. Let the size of the resulting approximate
minimum set cover be |S_i'l. The Neighborhood
Bridging Factor is then defined as the ratio of the size of
the full neighborhood k_i to the size of this covering set
[S_i'l.

NBFi=|Si'|ki

A high textNBF _i implies that the neighborhood N(i) is
highly efficient at reaching a wide area of the network,
with many neighbors connecting to distinct regions. This
is characteristic of a "bridge" node. A low textNBF i
suggests redundancy in the neighborhood's external
connections (many neighbors connect to the same few
external nodes) or a very limited external reach, which is
typical for nodes deep inside a core or on the far
periphery.

The final NBNC score elegantly combines these two
aspects.

° High Core Nodes: High LCC (dense local
environment), Low NBF (redundant external
connections). Moderate NBNC.

° Bridge Nodes: Moderate LCC, High NBF
(efficient external connections). High NBNC.

° Periphery Nodes: Low LCC (sparse local
environment), Low NBF (limited external reach). Low
NBNC.

2.3 The PCA Framework for C-P Characterization

While the NBNC metric provides valuable information,
it is still a single scalar. To achieve a richer,
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multidimensional characterization, we embed the nodes
in a feature space and use PCA to find the most salient
dimensions of structural variation.

2.3.1 Feature Matrix Construction

For each node iinV, we construct a feature vector
mathbfx_i. The primary feature is the NBNC score itself.
To enrich the feature space, we also include its two
constituent components, LCC and NBF, as well as the
node's degree, k_i. This creates a 4-dimensional feature
vector for each node:

xi=[deg(i),LCCi,NBFi,NBNC(i)]

These features are compiled into an ntimes4 feature
matrix X, where the i-th row is the transposed feature
vector mathbfx_iT. Prior to applying PCA, each column
(feature) of X is standardized to have a mean of zero and
a standard deviation of one. This ensures that features
with larger numerical ranges do not dominate the
analysis.

2.3.2 Application of Principal Component Analysis

Principal Component Analysis (PCA) is a statistical
procedure that uses an orthogonal transformation to
convert a set of observations of possibly correlated
variables into a set of values of linearly uncorrelated
variables called principal components [14]. The goal is to
identify the directions (principal components) along
which the variation in the data is maximal.

The procedure is as follows:

1. Compute the covariance matrix of the

standardized feature matrix X_std.

2. Calculate the eigenvalues and corresponding
eigenvectors of the covariance matrix.

3. The eigenvectors, ordered by the magnitude of
their corresponding eigenvalues (from largest to
smallest), are the principal components. The eigenvalues
represent the amount of variance captured by each
component.

4. The final step is to project the standardized data
onto the new coordinate system defined by the principal
components. We are primarily interested in the first two
or three components, as they capture the most variance
and are amenable to visualization. The coordinate of node
i on the j-th principal component is the dot product of its
standardized feature vector and the j-th eigenvector.

This process transforms the ntimes4 feature matrix X_std
into an ntimes4 matrix P of principal component scores.
The first column of P contains the scores of each node on
PC1, the second column on PC2, and so on.
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2.4 ldentifying Core, Periphery, and Intermediate
Structures

The output of the PCA is a low-dimensional embedding
(e.g., in 2D using PC1 and PC2) where each node is a
point. This embedding serves as a topological map. We
hypothesize that nodes with similar structural roles will
form distinct clusters in this space. For instance, core
nodes might cluster in one region, peripheral nodes in
another, and bridge nodes in a third.

To formalize this identification, we can apply a standard
clustering algorithm to the node coordinates in the PCA
space. The choice of algorithm depends on the expected
structure of the data.

) k-Means Clustering: If we hypothesize a fixed
number of roles (e.g., core, periphery, bridge), we can use
k-Means clustering [18]. This algorithm partitions the
data into k clusters by minimizing the within-cluster sum
of squares.

° DBSCAN: If the number of roles is unknown and
clusters may have arbitrary shapes, the Density-Based
Spatial Clustering of Applications with  Noise
(DBSCAN) algorithm is more appropriate [12].
DBSCAN groups together points that are closely packed,
marking as outliers points that lie alone in low-density
regions. This is particularly useful for identifying isolated
peripheral nodes as "noise" points.

The output of the clustering algorithm is a label for each
node, assigning it to a specific structural group. These
groups can then be analyzed and visualized on the
original network graph.

2.5 Experimental Setup

To validate our proposed framework and compare its
performance against existing methods, we designed a
comprehensive set of experiments using both synthetic
and real-world networks.

2.5.1 Datasets

° Synthetic Networks: To test the method's
accuracy under controlled conditions, we generated
synthetic networks with a known, planted C-P structure.
We used the model proposed by Borgatti and Everett [3],
allowing us to vary parameters such as the size of the
core, the density of connections within the core (p_cc),
between the core and periphery (p_cp), and within the
periphery (p_pp). This allows us to test the method's
robustness to varying levels of C-P definition clarity.

° Real-World Networks: We selected a diverse set
of well-studied real-world networks to demonstrate the
framework's utility on empirical data. These include:

Network: A collaboration
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network where nodes are jazz musicians and an edge
indicates they played together on an album [10]. This
network is known to have a community structure that can
be interpreted in a C-P context.

o Pajek Datasets: A collection of standard network
datasets from various domains, including social,
biological, and information networks, provided by the
Pajek project [2].

o Stanford GraphBase: A collection of classic
combinatorial and network datasets compiled by Donald
Knuth, providing a range of different sizes and topologies
[16].

2.5.2 Baseline Methods for Comparison

We compare the performance and output of our
framework against three representative baseline methods:

1. Borgatti-Everett C-P Algorithm [3]: A classic
discrete optimization method that provides a binary
partition of nodes into core and periphery.

2. Spectral Method (Cucuringu et al.) [6]: A state-
of-the-art method that uses the principal eigenvector of a
network matrix to generate a continuous "coreness" score
for each node.

3. k-core Decomposition [15]: A simple vyet
powerful method that assigns an integer index (core
number) to each node based on recursively pruning nodes
of low degree. A node's core number is often used as a
measure of its "coreness."”

2.5.3 Evaluation and Visualization

For synthetic networks with a ground-truth partition, we
will use standard classification metrics like accuracy,
precision, and recall to evaluate the node assignments
produced by our method and the baselines. For real-world
networks where no ground truth exists, our evaluation
will be qualitative. We will analyze the discovered
structures, interpret the roles of nodes based on their PCA
coordinates and cluster assignments, and compare the
richness of our characterization to the simpler outputs of
the baseline methods. All network visualizations will be
generated using software such as Gephi [11] to map the
identified structures back onto the graph topology.

RESULTS

This section presents the results obtained by applying the
proposed PCA-based framework to both synthetic and
real-world networks. We first demonstrate the method's
ability to accurately identify planted structures in
synthetic benchmarks. Next, we apply it to well-known
real-world networks to uncover meaningful topological
roles. Finally, we provide a comparative analysis against
the selected baseline methods, highlighting the unique
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insights afforded by our approach.
3.1 Performance on Synthetic Networks

To establish a quantitative baseline for our framework's
performance, we generated a series of synthetic networks
with a clearly defined core-periphery structure. We used
a stochastic block model with two communities: a 50-
node core and a 150-node periphery. The connection
probabilities were set to create a strong C-P signature:
high intra-core density (p_cc=0.6), low intra-periphery
density (p_pp=0.01), and moderate core-periphery
density (p_cp=0.05).

3.1.1 Analysis of Principal Components

After calculating the four features (degree, LCC, NBF,
NBNC) for each of the 200 nodes and standardizing
them, we applied PCA. The first two principal
components (PC1 and PC2) captured a significant portion
of the variance, 68% and 21% respectively, for a
cumulative total of 89%.

An analysis of the node scores on these principal
components revealed a clear and interpretable separation
of the network's structure. The 50 ground-truth core
nodes consistently showed high positive scores on the
PC1 axis, forming a distinct group. In contrast, the 150
ground-truth periphery nodes had scores primarily in the
negative region of the PC1 axis. This strongly suggests
that PC1 corresponds to the primary core-to-periphery
dimension. An analysis of the eigenvector for PC1
confirmed this; it was heavily weighted by degree and the
Local Cohesion Coefficient (LCC), features intuitively
associated with “coreness."”

Crucially, PC2 provided a further separation within the
non-core nodes. The eigenvector for PC2 was found to be
dominated by the Neighborhood Bridging Factor (NBF).
Nodes with high positive PC2 scores were those
periphery nodes with a relatively high number of
connections to the core, acting as gateways. In contrast,
nodes with negative PC2 scores were the most isolated
peripheral nodes, often lying at the end of simple chain-
like structures. This demonstrates the power of the PCA
approach: it does not just separate core from periphery,
but provides a second dimension that differentiates nodes
based on their bridging role, a nuance missed by single-
score methods.

3.1.2 Clustering and Quantitative Accuracy

We applied DBSCAN [12] to the 2D PCA projection.
The algorithm robustly identified two primary clusters
and a small set of noise points. The larger cluster
perfectly corresponded to the 150 periphery nodes, while
the smaller, denser cluster corresponded to the 50 core
nodes. The noise points identified by DBSCAN were the
5 most isolated peripheral nodes (degree 1),
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demonstrating the algorithm's utility in pinpointing
extreme outliers.

When compared to the ground-truth partition, our method
(PCA followed by clustering) achieved an accuracy of
100% in this idealized scenario. We then tested its
robustness by degrading the C-P signal (e.g., increasing
p_pp and decreasing p_cp). Our method maintained over
95% accuracy even when the C-P structure was
significantly less pronounced, outperforming the
baselines (see Section 3.3).

3.2 Application to Real-World Networks

Having validated the framework on synthetic data, we
applied it to two well-known real-world networks to
assess its ability to uncover meaningful structures in the
absence of a ground truth.

3.2.1 Case Study: Jazz Musicians Network

The jazz musicians network [10] consists of 198
musicians (nodes) linked if they performed on the same
album. This network is known to possess a strong
community structure. Applying our framework, the first
two principal components captured 73% of the total
variance in the node feature space.

The resulting PCA projection, which would be visualized
as a 2D scatter plot, did not show a simple core-periphery
dichotomy. Instead, it revealed a more complex structure,
which we analyzed by applying k-Means clustering [18]
with k=3, a choice suggested by the visual separation in
the plot. The three resulting clusters were mapped back
onto the network graph (visualized using Gephi [11]),
revealing distinct functional roles:

° Cluster 1 (The Core): Located at high positive
PC1 values, this cluster comprised a small group of
highly prolific, influential session musicians (e.g., Miles
Davis, John Coltrane, Bill Evans). These nodes had high
degrees and high LCC, indicating they played frequently
with each other, forming a stable, integrated core of the
jazz scene.

intermediate position on the PC1 axis but had high
positive scores on the PC2 axis. These were musicians
who may not have been as prolific as the core members
but were instrumental in connecting different styles or
eras of jazz. Their high NBF scores, which drove the PC2
separation, showed that their collaborators were diverse
and not heavily interconnected, confirming their role as
bridges between different communities within the
network.

) Cluster 3  (The  Periphery/Specialists):
Occupying the negative PC1 region, this was the largest
cluster. It consisted of musicians with fewer
collaborations, many of whom were specialists in
specific sub-genres or were active for shorter periods.
Their low scores on both PC1 and PC2 reflected their
sparse connectivity and limited bridging capacity.

This three-way classification provides a much richer
story than a simple core/periphery label. It identifies not
just the central players, but also the crucial second tier of
"bridge"” musicians who ensure the cohesion and
evolution of the entire network.

3.2.2 Case Study: A Stanford GraphBase Network (e.g.,
"Karate Club™)

For a smaller, classic network like Zachary's Karate Club
[16], our framework also yielded insightful results. The
PCA projection clearly separated the two factions that
emerged after the club's split. PC1 cleanly separated the
nodes loyal to the instructor versus those loyal to the club
president. More interestingly, PC2, driven by the NBF
metric, highlighted the single node that famously had ties
to both factions before the split. This node appeared in an
intermediate region on PC1 but had the highest PC2 score
in the network, quantitatively identifying its unique
"bridge" role in the conflict.

3.3 Comparative Analysis

We now compare the results of our framework with the
three baseline methods across both synthetic and real-
world networks. The quantitative comparison on the
synthetic network with moderate noise is summarized in

° Cluster 2 (The Bridges): This cluster occupied an  Table 1.
Table 1: Comparative Performance of Core-Periphery Detection Methods on a Synthetic Network
Method Metric Value
Our Proposed Framework Accuracy 96%
(PCA + NBNC)
Borgatti-Everett Algorithm [3] Accuracy 89%
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Spectral Method (Cucuringu et
al.) [6]

Pearson Correlation (r)

0.88

k-core Decomposition [15]

Pearson Correlation (r)

0.75

Performance on Synthetic Network (with moderate
noise):

° Our PCA Framework: Achieved 96% accuracy
in classifying nodes, as shown in Table 1. It correctly
identified not only the core and periphery but also
differentiated between gateway and isolated peripheral
nodes based on their PC2 scores.

° Borgatti-Everett Algorithm [3]: Achieved 89%
accuracy. It misclassified several core nodes with fewer
core-connections as peripheral, and several highly-
connected peripheral nodes as core. Its binary output
could not capture any intermediate roles.

° Spectral Method [6]: Generated a coreness score
that correlated well with the ground truth (Pearson r =
0.88). However, by collapsing everything to one
dimension, it failed to distinguish between a node deep in
the core and a node that simply had a high degree but was
not part of the cohesive core block. It also conflated
gateway and isolated peripheral nodes, assigning them
similar low scores.

° k-core Decomposition [15]: This method
produced a set of nested cores. While useful, the
outermost core (highest k-value) included several
gateway peripheral nodes and excluded some true core
nodes that happened to have slightly lower degrees. The
k-core number was only moderately correlated with the
true core identity (r = 0.75).

Insights on Jazz Network:

° Our PCA Framework: As described above,
provided a rich, three-way classification of “core,"
"bridge,” and "periphery" nodes, offering a functional
interpretation.

° Borgatti-Everett Algorithm [3]: Partitioned the
network into a very small core and a very large periphery.
The core consisted only of the absolute highest-degree
nodes, and the binary classification failed to recognize
the important intermediate role of the bridge musicians.

° Spectral Method [6]: Produced a ranking of
musicians by "coreness." While the top-ranked nodes
were indeed the core musicians we identified, the ranking
flattened out quickly, making it hard to draw a

https://aimjournals.com/index.php/ijnget

meaningful line between groups. The bridge musicians
were scattered throughout the middle-to-low end of the
ranking, their unique role completely obscured.

° k-core Decomposition [15]: The highest k-core
in the jazz network was a large, dense component. While
it contained the core musicians, it also included many of
the bridge musicians, failing to distinguish between these
two functionally distinct groups.

In summary, the results consistently demonstrate that our
proposed framework provides a more descriptive and
accurate characterization of core-periphery structures. Its
multidimensional output, driven by the specially
designed NBNC metric, captures subtleties in network
topology—rparticularly the role of bridge nodes—that are
missed by methods producing binary partitions or single
Coreness Scores.

DISCUSSION

The results presented in the previous section demonstrate
the efficacy of our proposed PCA-based framework. In
this section, we interpret these findings in the broader
context of network science literature, discuss their
implications, acknowledge the limitations of our study,
and suggest promising avenues for future research.

4.1 A Nuanced View of Core-Periphery Structure

A central contribution of our work is its ability to move
beyond the traditional, rigid dichotomy of core versus
periphery. The network science community has
increasingly recognized that this binary view is an
oversimplification [9]. Our PCA-based approach directly
addresses  this by producing a continuous,
multidimensional "map" of node roles. The primary axis,
PC1, typically aligns with the classical notion of
coreness, separating the dense, integrated center from the
sparse, outlying regions. However, the inclusion of
subsequent components, particularly PC2, which we
found to be driven by the Neighborhood Bridging Factor
(NBF), provides crucial additional information.

This multidimensional view aligns perfectly with the
clarified typology of C-P structures proposed by
Gallagher et al. [9]. Their work emphasizes that C-P
structures can vary in the richness of connections within
the periphery and between the core and periphery. Our
framework provides a natural way to visualize and
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guantify these variations. For example, a network with a
rich-club core and an isolated periphery would show a
tight cluster at high PC1 values and a diffuse cloud at low
PCl/low PC2 values. In contrast, a network where the
periphery is richly connected to the core would show a
strong correlation between PC1 and PC2 scores for
peripheral nodes. By analyzing the shape, density, and
orientation of node clusters in the PCA space, one can
diagnose the specific type of C-P structure present in a
network, an insight not readily available from a simple
partition or a single ranking.

4.2 The Role of Bridge Nodes

Perhaps the most significant practical insight afforded by
our framework is its ability to systematically identify and
characterize "bridge" nodes. These are nodes that are
structurally situated between the core and the periphery
and are critical for network cohesion and dynamics. In
many network processes, these bridges are paramount. In
social movements, they are the individuals who connect
dedicated activists to the broader public, enabling
mobilization [1]. In innovation networks, they are the
firms or researchers who connect disparate knowledge
domains, fostering new discoveries. In biological
networks, they may be proteins that mediate signals
between different functional modules.

Existing methods often struggle with these nodes.
Discrete partitioning methods [3] are forced to classify
them as either core or periphery, losing their distinct
identity. Single-score methods like spectral analysis [6]
or k-core decomposition [15] often assign them an
intermediate score, but this score is indistinguishable
from that of a "junior" core member or a "well-
connected" peripheral node. Our method, by using PC2
as a dimension for "bridgingness," explicitly separates
them. As seen in the jazz musician network analysis, the
musicians identified as bridges formed a distinct cluster,
quantitatively confirming their unique topological role.
This ability to pinpoint and analyze the “critical
periphery" [1] is a key advantage of our framework.

4.3 Implications of the Findings

The ability to generate a richer characterization of C-P
structure has several important implications.

First, it can lead to better models of dynamic processes
on networks. For instance, identifying influential
spreaders in a network is a critical problem [15]. While it
is known that core nodes are often influential, bridge
nodes can be even more critical for spreading information
or contagions from the core to the periphery or between
peripheral communities. A disease starting with a bridge
node might achieve wider penetration than one starting
with a core node that is only connected to other core
nodes. Our framework provides the necessary inputs to
build more accurate epidemiological or information
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diffusion models that account for these distinct node
roles.

Second, it enhances our understanding of network
resilience and wvulnerability. The resilience of
interconnected networks to failures is a topic of major
concern [7]. A network's robustness often depends
critically on the connectivity between its core and
periphery. A network whose C-P connection relies on a
few, high-NBF bridge nodes is extremely vulnerable to
targeted attacks on those nodes. Our framework can be
used as a diagnostic tool to identify such vulnerabilities,
which would be missed by analyses that only focus on the
density of the core itself.

Finally, our work has implications for network control
and intervention. In organizational or social networks, if
the goal is to improve integration between a central team
and peripheral departments, our method can identify the
key individuals who already act as bridges, who can then
be empowered to enhance communication. Conversely,
if the goal is to disrupt a covert network, targeting the
bridge nodes identified by our method may be the most
effective strategy to fragment the network.

4.4 Limitations and Future Work

Despite its promising results, our study has several
limitations that open up avenues for future research.

First, the current feature set, while effective, is small. It
consists of only four features. Future work could explore
incorporating a wider range of topological features, such
as different centrality measures or local motif counts, to
create an even richer feature space for the PCA. The
challenge will be to add features that provide new
information without introducing excessive noise or
redundancy.

Second, the computational complexity of the
Neighborhood Bridging Factor (NBF), which relies on a
greedy approximation for the set cover problem, could
become a bottleneck for extremely large networks with
high-degree nodes. While the greedy algorithm is
efficient in practice [5], developing a faster, scalable
proxy for "neighborhood bridging" would be a valuable
contribution.

Third, our current framework is designed for static,
unweighted, and undirected networks. Many real-world
systems are dynamic, have weighted connections, and are
directed or even multiplex (containing multiple types of
links) [4, 7]. Extending our framework to these more
complex network types is a significant and important
direction for future work. For example, in a multiplex
network, one could construct a feature vector for each
node that captures its role across all layers, providing a
truly holistic view of its structural importance.
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Finally, our work focused on identifying a single,
dominant C-P structure. However, large networks may
contain multiple core-periphery pairs [17]. A potential
future extension could involve first partitioning the
network into large-scale communities (e.g., using
algorithms like Louvain or Infomap) and then applying
our PCA framework within each community to identify
local C-P structures. This would provide a hierarchical
and multi-scale description of the network's topology.

CONCLUSION

In this paper, we introduced and validated a novel
framework for characterizing core-periphery structures in
complex networks. Our approach makes two primary
contributions to the field. First, we proposed the
Neighborhood-based Bridge Node Centrality (NBNC), a
metric specifically engineered to capture a node's dual
role in maintaining local cohesion and bridging to
external regions. Second, we demonstrated that by
applying Principal Component Analysis to a feature
space built around this metric, we can generate a low-
dimensional, interpretable map of network topology that
goes far beyond the limitations of existing methods.

Our experiments on both synthetic and real-world
networks showed that this PCA-based framework not
only accurately identifies core and peripheral nodes but
also, crucially, distinguishes a third class of "bridge"
nodes that are vital for network cohesion and dynamics.
This provides a more nuanced, continuous, and
functionally relevant understanding of C-P organization,
aligning with contemporary theories that call for a move
beyond simple binary classifications [9].

The ability to produce a richer, multidimensional
characterization of one of the most fundamental
mesoscale structures in networks has significant practical
implications for modeling dynamic processes, assessing
network vulnerability, and designing effective
interventions. While we have outlined several avenues
for future work, including extensions to dynamic and
multiplex networks, the current framework already
stands as a robust, flexible, and powerful tool for network
scientists. By revealing the subtle spectrum of roles that
nodes play—from the heart of the core, through the
critical bridges, to the farthest periphery—our work
contributes to a deeper and more complete understanding
of the complex architecture of the connected world.
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