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ABSTRACT 

 

Background: The core-periphery (C-P) structure is a fundamental feature of complex networks, yet its 

characterization remains a significant challenge. Existing methods often impose a discrete partition on the network, 

classifying nodes as either core or periphery, which oversimplifies the diverse and continuous roles nodes can play. 

Methods: We propose a novel framework for a more nuanced C-P characterization. First, we introduce a 

"Neighborhood-based Bridge Node Centrality" metric, designed to quantify the extent to which a node connects its 

local neighborhood to the wider network. We then apply Principal Component Analysis (PCA) to a node-feature 

matrix derived from this metric. The resulting principal components provide a low-dimensional embedding where 

nodes are positioned based on their topological roles. A clustering algorithm is then used on this embedding to 

identify core, periphery, and intermediate structures. 

Results: On synthetic networks with known C-P structures, our framework demonstrates high accuracy. When 

applied to real-world networks, including a jazz musician collaboration network, it reveals a continuous spectrum of 

"coreness" and effectively identifies bridge nodes that are critical for network cohesion. A comparative analysis 

shows our method provides a richer characterization than traditional approaches based on discrete optimization and 

spectral methods. 

Conclusion: The proposed PCA framework offers a flexible, interpretable, and powerful tool for analyzing core-

periphery structures. By moving beyond a binary classification, it provides deeper insights into the complex topology 

of networks, with significant implications for understanding dynamics like influence spreading and system resilience. 
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Network Science, Core-Periphery Structure, Principal Component Analysis (PCA), Node Centrality, Community 

Detection, Topological Data Analysis. 

INTRODUCTION 

1.1 The Importance of Network Topology 

Networks provide a powerful mathematical framework 

for representing and analyzing complex systems across a 

vast range of scientific and societal domains. From the 

intricate web of protein-protein interactions within a cell 

to the global connectivity of the internet, and from the 

delicate structure of financial markets to the patterns of 

social relationships that govern our lives, the paradigm of 

nodes and edges has become an indispensable tool for 

discovery [4]. The structure, or topology, of these 

networks is far from random; it encodes fundamental 

information about the system's function, its resilience to 

failure, its efficiency in transport and communication, 

and the dynamics of processes that unfold upon it, such 

as the spread of information or disease. Understanding 

this topology is therefore not merely an academic 

exercise in graph theory, but a critical prerequisite for 

predicting, controlling, and designing complex systems. 

A key insight from decades of network science research 

is that the functionality of a network is profoundly shaped 

by its mesoscale organization—patterns of connectivity 

 

https://aimjournals.com/index.php/ijngets
https://aimjournals.com/index.php/ijngets
https://doi.org/10.55640/ijnget-v02i09-01
https://doi.org/10.55640/ijnget-v02i09-01


INTERNATIONAL JOURNAL OF NEXT-GENERATION 

ENGINEERING AND TECHNOLOGY (IJNGET) 

https://aimjournals.com/index.php/ijnget 

 

 

pg. 2 

that are neither local (involving single nodes and their 

immediate neighbors) nor global (involving the entire 

network), but exist at an intermediate level. These 

mesoscale structures, which include communities, 

modules, and hierarchical arrangements, often 

correspond to functional units within the system. One of 

the most ubiquitous and functionally significant of these 

structures is the core-periphery (C-P) topology. 

1.2 Core-Periphery Structures 

A core-periphery structure is, in its idealized form, a 

network topology characterized by a dense, cohesive 

group of nodes—the core—and a sparse, loosely 

connected set of nodes—the periphery—that is primarily 

connected to the core rather than to itself [3]. The nodes 

within the core are numerous and have a high density of 

internal connections, forming a stable and integrated 

center. In contrast, nodes in the periphery are few, 

sparsely interconnected, and their primary linkage to the 

network is through connections with core nodes. This 

arrangement has profound implications for network 

processes. The core often acts as a central hub for 

information processing and distribution, a bastion of 

stability and resilience, and a dominant influence on 

network-wide dynamics. The periphery, while less 

integrated, can serve as a source of novelty and 

adaptation, a gateway to other networks, or, in some 

contexts, a population susceptible to influences 

emanating from the core. 

The functional importance of C-P structures has been 

documented across numerous fields. In social networks, 

a core of dedicated activists can be essential for the initial 

survival and coordination of a social movement, while a 

"critical periphery" of more loosely engaged individuals 

can determine whether the movement achieves 

widespread growth and impact [1]. In transportation and 

communication networks, a well-defined core ensures 

efficient long-distance transit, while the periphery 

handles local distribution. In economic networks, core 

financial institutions or industries often dominate the 

flow of capital and resources, with peripheral entities 

being more specialized and dependent. The concept of a 

dominant, central component is also echoed in other 

graph-theoretic problems, such as the search for a 

minimum dominating set, where a subset of nodes is 

chosen to "cover" the entire graph, conceptually akin to a 

functional core [13]. 

Recently, the traditional, monolithic view of C-P 

structure has been refined. Gallagher et al. [9] proposed a 

clarified typology that moves beyond the simple core-or-

periphery dichotomy. They identify four distinct types of 

C-P structures based on the relative richness of 

connections within the core, within the periphery, and 

between the two groups. This work highlights the need 

for methods that can capture the nuances of these 

different configurations, as the functional implications of 

a network with a rich-club core and an isolated periphery 

are vastly different from one where the periphery is also 

richly connected to the core. This evolving understanding 

underscores the limitations of methods that impose a 

strict binary classification and motivates the development 

of more flexible and descriptive analytical frameworks. 

1.3 Existing Detection Methods and Their Limitations 

The task of identifying C-P structures in real-world 

networks is non-trivial. A variety of computational 

methods have been developed, each with its own 

strengths and weaknesses. One of the pioneering 

approaches, proposed by Borgatti and Everett [3], is a 

discrete optimization method. This method attempts to 

find a partition of nodes into a core set and a periphery 

set that maximizes a quality function. This function is 

typically based on the ideal C-P blockmodel, where the 

core sub-matrix is filled with ones (or high values), the 

periphery-periphery sub-matrix is filled with zeros (or 

low values), and the core-periphery blocks have some 

intermediate density. While foundational, this approach 

is computationally expensive (often NP-hard), forcing 

reliance on heuristics, and it fundamentally assumes a 

discrete, binary partition, which may not accurately 

reflect the continuous nature of node roles in many 

networks. 

Another class of methods leverages the dynamics of 

processes on the network. For instance, Della Rossa et al. 

[8] introduced a method based on random walkers. The 

intuition is that walkers will tend to get "trapped" for 

longer periods within the dense core. By analyzing the 

stationary distribution or return times of random walks, 

one can derive a "coreness" score for each node. These 

methods are elegant and often computationally efficient, 

but their results can be sensitive to the specific dynamics 

chosen, and they may still produce a single scalar value 

of coreness that struggles to capture the multifaceted 

roles nodes can play. 

More recently, spectral methods have gained popularity 

due to their computational efficiency and mathematical 

elegance [6]. These methods typically analyze the 

eigenvectors of a network's adjacency or Laplacian 

matrix. For example, Cucuringu et al. [6] developed a 

spectral algorithm that uses the principal eigenvector of a 

specific matrix to order the nodes from most peripheral 

to most core-like. While powerful and scalable, spectral 

methods have their own limitations. The interpretation of 

eigenvectors beyond the first one can be challenging, and 

like random walk methods, they often collapse a node's 

complex structural position into a single dimension, 

making it difficult to distinguish between different types 

of non-core nodes (e.g., a truly isolated peripheral node 

versus a "bridge" node that connects the core to a 

peripheral cluster). Furthermore, their performance can 

degrade in networks that deviate significantly from the 

idealized C-P model. 
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A common thread among these limitations is a tendency 

towards simplification. By forcing a discrete partition or 

calculating a single coreness score, existing methods risk 

obscuring the rich, continuous, and often 

multidimensional spectrum of roles that nodes occupy. A 

node is not simply "core" or "periphery"; it may be a 

central member of the core, a peripheral member of the 

core, a bridge connecting the core to the periphery, a local 

hub within the periphery, or a truly isolated singleton. 

Capturing this diversity is essential for a deeper 

understanding of network function. 

1.4 The Proposed Approach 

This paper introduces a novel framework to address these 

limitations and provide a more granular, interpretable, 

and multidimensional characterization of core-periphery 

structures. Our approach is built upon two key 

innovations. 

First, we propose a new node-level metric called 

Neighborhood-based Bridge Node Centrality (NBNC). 

Unlike traditional centrality measures that focus purely 

on connectivity (degree) or path-based importance 

(betweenness), NBNC is specifically designed to 

quantify the dual role a node plays in terms of its local 

neighborhood cohesion and its capacity to act as a bridge 

to other parts of the network. It distinguishes between 

nodes embedded deep within a dense cluster and those 

whose neighborhoods serve as conduits between 

different regions, a critical feature for identifying 

intermediate or bridging roles between the core and 

periphery. 

Second, we leverage Principal Component Analysis 

(PCA), a powerful and well-established technique for 

dimensionality reduction and data exploration [14], as the 

core of our analytical framework. Instead of calculating a 

single score for each node, we first compute the NBNC 

metric (and potentially other local features) for every 

node in the network. We then treat the nodes as data 

points in a high-dimensional feature space and apply 

PCA to project them onto a lower-dimensional space 

defined by the principal components. These components, 

being orthogonal linear combinations of the original 

features, represent the most significant axes of variation 

in the nodes' structural properties. 

This PCA-based embedding provides a rich "map" of the 

network's C-P topology. Rather than a binary label, each 

node receives a coordinate in this new space. We 

hypothesize that the first principal component will often 

correspond to the classic core-to-periphery axis, while 

subsequent components will reveal more subtle structural 

roles, effectively separating "bridge" nodes from 

"isolated" peripheral nodes. By analyzing the positions 

and clustering of nodes in this space, we can move 

beyond a simple partition and towards a more 

comprehensive characterization, aligning with the 

nuanced typologies proposed by recent work [9]. 

1.5 Research Questions and Paper Structure 

This study is guided by the following primary research 

questions: 

1. Can the proposed Neighborhood-based Bridge 

Node Centrality metric effectively capture the structural 

properties required to differentiate between core, 

periphery, and intermediate bridge nodes? 

2. Does the application of Principal Component 

Analysis to neighborhood-based features provide a more 

descriptive and interpretable characterization of core-

periphery structure than existing methods? 

3. How does the proposed framework perform in 

identifying and classifying nodes in both synthetic 

networks with known ground truths and diverse real-

world networks? 

The remainder of this paper is structured as follows. 

Section 2 provides a detailed description of the 

methodology, including the formal definition of the 

NBNC metric and the step-by-step implementation of the 

PCA framework. Section 3 presents the results of our 

experiments on both synthetic and real-world networks, 

including a comparative analysis against established 

baseline methods. Section 4 discusses the interpretation 

and implications of these results, highlighting the 

framework's ability to offer a nuanced view of C-P 

structure and the specific roles of bridge nodes. Finally, 

Section 5 concludes the paper, summarizing our 

contributions and suggesting directions for future 

research. 

METHODOLOGY 

This section details the proposed framework for 

characterizing core-periphery structures. We begin with 

formal definitions of the network concepts used. We then 

introduce the novel Neighborhood-based Bridge Node 

Centrality (NBNC) metric, which forms the basis of our 

analysis. Following this, we describe the application of 

Principal Component Analysis (PCA) to create a low-

dimensional embedding of the nodes. Finally, we outline 

the clustering procedure used to identify structural roles 

and describe the experimental setup for validating our 

method. 

2.1 Preliminaries 

We consider an unweighted, undirected graph G=(V,E), 

where V is the set of n=∣V∣ nodes (or vertices) and E is 

the set of m=∣E∣ edges (or links) connecting pairs of 

nodes. The adjacency matrix of the graph is an ntimesn 

matrix A, where A_ij=1 if an edge exists between node i 

and node j, and A_ij=0 otherwise. 
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The neighborhood of a node i, denoted N(i), is the set of 

nodes directly connected to i: N(i)=jinV∣A_ij=1. The 

degree of node i, denoted k_i, is the size of its 

neighborhood: k_i=∣N(i)∣. 

The subgraph induced by the neighborhood of node i, 

denoted G[N(i)], consists of the nodes in N(i) and all 

edges from E that connect any two nodes within N(i). The 

number of edges in this subgraph is given by 

m_i=frac12sum_jinN(i)sum_linN(i)A_jl. 

2.2 The Proposed Metric: Neighborhood-based 

Bridge Node Centrality (NBNC) 

The central innovation of our feature engineering is the 

Neighborhood-based Bridge Node Centrality (NBNC). 

This metric is designed to move beyond simple degree 

counts or global path-based measures. It quantifies a 

node's structural role by simultaneously considering two 

critical aspects: the internal cohesion of its local 

neighborhood and the external connectivity of that 

neighborhood to the rest of the graph. The intuition is that 

a node's function is determined not just by how many 

connections it has, but also by how its neighbors are 

connected to each other and to the wider network. 

The NBNC for a node i is defined as the product of two 

components: the Local Cohesion Coefficient (textLCC_i) 

and the Neighborhood Bridging Factor (textNBF_i). 

NBNC(i)=LCCi×NBFi 

2.2.1 Local Cohesion Coefficient (textLCC_i) 

The LCC measures how densely interconnected the 

neighbors of node i are. It is closely related to the local 

clustering coefficient. For a node i with degree k_i1, the 

maximum possible number of edges between its 

neighbors is binomk_i2=frack_i(k_i−1)2. The LCC is the 

ratio of the actual number of edges in the induced 

neighborhood subgraph, m_i, to this maximum possible 

number. 

LCCi={ki(ki−1)2mi0if ki>1if ki≤1 

A high textLCC_i indicates that node i is part of a tightly-

knit community or clique-like structure. Nodes deep 

within a network core are expected to have a high LCC. 

Conversely, a low textLCC_i suggests that node i sits in 

a sparse, tree-like region of the network, which is 

characteristic of peripheral nodes. 

2.2.2 Neighborhood Bridging Factor (textNBF_i) 

The NBF is designed to capture the extent to which a 

node's neighborhood serves as a bridge to distinct, remote 

parts of the network. To compute this, we consider the set 

of nodes at distance 2 from node i, which are the 

neighbors of its neighbors, excluding i itself and its 

immediate neighbors. Let this set be 

N_2(i)=vinVsetminus(N(i)cupi)∣existsjinN(i)texts.t.A_j

v=1. 

The NBF quantifies the "reach" of the neighborhood N(i) 

into this second-order neighborhood N_2(i). A simple 

count of nodes in N_2(i) is insufficient, as it would be 

highly correlated with degree. Instead, we measure the 

number of nodes in N(i) that are required to "dominate" 

or reach all nodes in N_2(i). A node jinN(i) is said to 

reach a node vinN_2(i) if an edge (j,v) exists. We seek 

the size of the smallest subset of N(i), let's call it $S\_i^\* 

\\subseteq N(i)$, such that every node in N_2(i) is 

adjacent to at least one node in $S\_i^\*$. This is 

precisely the set cover problem on the bipartite graph 

between N(i) and N_2(i), which is a classic NP-hard 

problem. 

Given the computational complexity of finding the exact 

minimum set cover [5, 13], we employ a standard greedy 

algorithm for an efficient approximation. The algorithm 

iteratively selects the node in N(i) that covers the most 

yet-uncovered nodes in N_2(i) until all nodes in N_2(i) 

are covered. Let the size of the resulting approximate 

minimum set cover be ∣S_i′∣. The Neighborhood 

Bridging Factor is then defined as the ratio of the size of 

the full neighborhood k_i to the size of this covering set 

∣S_i′∣. 

NBFi=∣Si′∣ki 

A high textNBF_i implies that the neighborhood N(i) is 

highly efficient at reaching a wide area of the network, 

with many neighbors connecting to distinct regions. This 

is characteristic of a "bridge" node. A low textNBF_i 

suggests redundancy in the neighborhood's external 

connections (many neighbors connect to the same few 

external nodes) or a very limited external reach, which is 

typical for nodes deep inside a core or on the far 

periphery. 

The final NBNC score elegantly combines these two 

aspects. 

● High Core Nodes: High LCC (dense local 

environment), Low NBF (redundant external 

connections). Moderate NBNC. 

● Bridge Nodes: Moderate LCC, High NBF 

(efficient external connections). High NBNC. 

● Periphery Nodes: Low LCC (sparse local 

environment), Low NBF (limited external reach). Low 

NBNC. 

2.3 The PCA Framework for C-P Characterization 

While the NBNC metric provides valuable information, 

it is still a single scalar. To achieve a richer, 
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multidimensional characterization, we embed the nodes 

in a feature space and use PCA to find the most salient 

dimensions of structural variation. 

2.3.1 Feature Matrix Construction 

For each node iinV, we construct a feature vector 

mathbfx_i. The primary feature is the NBNC score itself. 

To enrich the feature space, we also include its two 

constituent components, LCC and NBF, as well as the 

node's degree, k_i. This creates a 4-dimensional feature 

vector for each node: 

xi=[deg(i),LCCi,NBFi,NBNC(i)] 

These features are compiled into an ntimes4 feature 

matrix X, where the i-th row is the transposed feature 

vector mathbfx_iT. Prior to applying PCA, each column 

(feature) of X is standardized to have a mean of zero and 

a standard deviation of one. This ensures that features 

with larger numerical ranges do not dominate the 

analysis. 

2.3.2 Application of Principal Component Analysis 

Principal Component Analysis (PCA) is a statistical 

procedure that uses an orthogonal transformation to 

convert a set of observations of possibly correlated 

variables into a set of values of linearly uncorrelated 

variables called principal components [14]. The goal is to 

identify the directions (principal components) along 

which the variation in the data is maximal. 

The procedure is as follows: 

1. Compute the covariance matrix of the 

standardized feature matrix X_std. 

2. Calculate the eigenvalues and corresponding 

eigenvectors of the covariance matrix. 

3. The eigenvectors, ordered by the magnitude of 

their corresponding eigenvalues (from largest to 

smallest), are the principal components. The eigenvalues 

represent the amount of variance captured by each 

component. 

4. The final step is to project the standardized data 

onto the new coordinate system defined by the principal 

components. We are primarily interested in the first two 

or three components, as they capture the most variance 

and are amenable to visualization. The coordinate of node 

i on the j-th principal component is the dot product of its 

standardized feature vector and the j-th eigenvector. 

This process transforms the ntimes4 feature matrix X_std 

into an ntimes4 matrix P of principal component scores. 

The first column of P contains the scores of each node on 

PC1, the second column on PC2, and so on. 

2.4 Identifying Core, Periphery, and Intermediate 

Structures 

The output of the PCA is a low-dimensional embedding 

(e.g., in 2D using PC1 and PC2) where each node is a 

point. This embedding serves as a topological map. We 

hypothesize that nodes with similar structural roles will 

form distinct clusters in this space. For instance, core 

nodes might cluster in one region, peripheral nodes in 

another, and bridge nodes in a third. 

To formalize this identification, we can apply a standard 

clustering algorithm to the node coordinates in the PCA 

space. The choice of algorithm depends on the expected 

structure of the data. 

● k-Means Clustering: If we hypothesize a fixed 

number of roles (e.g., core, periphery, bridge), we can use 

k-Means clustering [18]. This algorithm partitions the 

data into k clusters by minimizing the within-cluster sum 

of squares. 

● DBSCAN: If the number of roles is unknown and 

clusters may have arbitrary shapes, the Density-Based 

Spatial Clustering of Applications with Noise 

(DBSCAN) algorithm is more appropriate [12]. 

DBSCAN groups together points that are closely packed, 

marking as outliers points that lie alone in low-density 

regions. This is particularly useful for identifying isolated 

peripheral nodes as "noise" points. 

The output of the clustering algorithm is a label for each 

node, assigning it to a specific structural group. These 

groups can then be analyzed and visualized on the 

original network graph. 

2.5 Experimental Setup 

To validate our proposed framework and compare its 

performance against existing methods, we designed a 

comprehensive set of experiments using both synthetic 

and real-world networks. 

2.5.1 Datasets 

● Synthetic Networks: To test the method's 

accuracy under controlled conditions, we generated 

synthetic networks with a known, planted C-P structure. 

We used the model proposed by Borgatti and Everett [3], 

allowing us to vary parameters such as the size of the 

core, the density of connections within the core (p_cc), 

between the core and periphery (p_cp), and within the 

periphery (p_pp). This allows us to test the method's 

robustness to varying levels of C-P definition clarity. 

● Real-World Networks: We selected a diverse set 

of well-studied real-world networks to demonstrate the 

framework's utility on empirical data. These include: 

○ Jazz Musicians Network: A collaboration 
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network where nodes are jazz musicians and an edge 

indicates they played together on an album [10]. This 

network is known to have a community structure that can 

be interpreted in a C-P context. 

○ Pajek Datasets: A collection of standard network 

datasets from various domains, including social, 

biological, and information networks, provided by the 

Pajek project [2]. 

○ Stanford GraphBase: A collection of classic 

combinatorial and network datasets compiled by Donald 

Knuth, providing a range of different sizes and topologies 

[16]. 

2.5.2 Baseline Methods for Comparison 

We compare the performance and output of our 

framework against three representative baseline methods: 

1. Borgatti-Everett C-P Algorithm [3]: A classic 

discrete optimization method that provides a binary 

partition of nodes into core and periphery. 

2. Spectral Method (Cucuringu et al.) [6]: A state-

of-the-art method that uses the principal eigenvector of a 

network matrix to generate a continuous "coreness" score 

for each node. 

3. k-core Decomposition [15]: A simple yet 

powerful method that assigns an integer index (core 

number) to each node based on recursively pruning nodes 

of low degree. A node's core number is often used as a 

measure of its "coreness." 

2.5.3 Evaluation and Visualization 

For synthetic networks with a ground-truth partition, we 

will use standard classification metrics like accuracy, 

precision, and recall to evaluate the node assignments 

produced by our method and the baselines. For real-world 

networks where no ground truth exists, our evaluation 

will be qualitative. We will analyze the discovered 

structures, interpret the roles of nodes based on their PCA 

coordinates and cluster assignments, and compare the 

richness of our characterization to the simpler outputs of 

the baseline methods. All network visualizations will be 

generated using software such as Gephi [11] to map the 

identified structures back onto the graph topology. 

RESULTS 

This section presents the results obtained by applying the 

proposed PCA-based framework to both synthetic and 

real-world networks. We first demonstrate the method's 

ability to accurately identify planted structures in 

synthetic benchmarks. Next, we apply it to well-known 

real-world networks to uncover meaningful topological 

roles. Finally, we provide a comparative analysis against 

the selected baseline methods, highlighting the unique 

insights afforded by our approach. 

3.1 Performance on Synthetic Networks 

To establish a quantitative baseline for our framework's 

performance, we generated a series of synthetic networks 

with a clearly defined core-periphery structure. We used 

a stochastic block model with two communities: a 50-

node core and a 150-node periphery. The connection 

probabilities were set to create a strong C-P signature: 

high intra-core density (p_cc=0.6), low intra-periphery 

density (p_pp=0.01), and moderate core-periphery 

density (p_cp=0.05). 

3.1.1 Analysis of Principal Components 

After calculating the four features (degree, LCC, NBF, 

NBNC) for each of the 200 nodes and standardizing 

them, we applied PCA. The first two principal 

components (PC1 and PC2) captured a significant portion 

of the variance, 68% and 21% respectively, for a 

cumulative total of 89%. 

An analysis of the node scores on these principal 

components revealed a clear and interpretable separation 

of the network's structure. The 50 ground-truth core 

nodes consistently showed high positive scores on the 

PC1 axis, forming a distinct group. In contrast, the 150 

ground-truth periphery nodes had scores primarily in the 

negative region of the PC1 axis. This strongly suggests 

that PC1 corresponds to the primary core-to-periphery 

dimension. An analysis of the eigenvector for PC1 

confirmed this; it was heavily weighted by degree and the 

Local Cohesion Coefficient (LCC), features intuitively 

associated with "coreness." 

Crucially, PC2 provided a further separation within the 

non-core nodes. The eigenvector for PC2 was found to be 

dominated by the Neighborhood Bridging Factor (NBF). 

Nodes with high positive PC2 scores were those 

periphery nodes with a relatively high number of 

connections to the core, acting as gateways. In contrast, 

nodes with negative PC2 scores were the most isolated 

peripheral nodes, often lying at the end of simple chain-

like structures. This demonstrates the power of the PCA 

approach: it does not just separate core from periphery, 

but provides a second dimension that differentiates nodes 

based on their bridging role, a nuance missed by single-

score methods. 

3.1.2 Clustering and Quantitative Accuracy 

We applied DBSCAN [12] to the 2D PCA projection. 

The algorithm robustly identified two primary clusters 

and a small set of noise points. The larger cluster 

perfectly corresponded to the 150 periphery nodes, while 

the smaller, denser cluster corresponded to the 50 core 

nodes. The noise points identified by DBSCAN were the 

5 most isolated peripheral nodes (degree 1), 
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demonstrating the algorithm's utility in pinpointing 

extreme outliers. 

When compared to the ground-truth partition, our method 

(PCA followed by clustering) achieved an accuracy of 

100% in this idealized scenario. We then tested its 

robustness by degrading the C-P signal (e.g., increasing 

p_pp and decreasing p_cp). Our method maintained over 

95% accuracy even when the C-P structure was 

significantly less pronounced, outperforming the 

baselines (see Section 3.3). 

3.2 Application to Real-World Networks 

Having validated the framework on synthetic data, we 

applied it to two well-known real-world networks to 

assess its ability to uncover meaningful structures in the 

absence of a ground truth. 

3.2.1 Case Study: Jazz Musicians Network 

The jazz musicians network [10] consists of 198 

musicians (nodes) linked if they performed on the same 

album. This network is known to possess a strong 

community structure. Applying our framework, the first 

two principal components captured 73% of the total 

variance in the node feature space. 

The resulting PCA projection, which would be visualized 

as a 2D scatter plot, did not show a simple core-periphery 

dichotomy. Instead, it revealed a more complex structure, 

which we analyzed by applying k-Means clustering [18] 

with k=3, a choice suggested by the visual separation in 

the plot. The three resulting clusters were mapped back 

onto the network graph (visualized using Gephi [11]), 

revealing distinct functional roles: 

● Cluster 1 (The Core): Located at high positive 

PC1 values, this cluster comprised a small group of 

highly prolific, influential session musicians (e.g., Miles 

Davis, John Coltrane, Bill Evans). These nodes had high 

degrees and high LCC, indicating they played frequently 

with each other, forming a stable, integrated core of the 

jazz scene. 

● Cluster 2 (The Bridges): This cluster occupied an 

intermediate position on the PC1 axis but had high 

positive scores on the PC2 axis. These were musicians 

who may not have been as prolific as the core members 

but were instrumental in connecting different styles or 

eras of jazz. Their high NBF scores, which drove the PC2 

separation, showed that their collaborators were diverse 

and not heavily interconnected, confirming their role as 

bridges between different communities within the 

network. 

● Cluster 3 (The Periphery/Specialists): 

Occupying the negative PC1 region, this was the largest 

cluster. It consisted of musicians with fewer 

collaborations, many of whom were specialists in 

specific sub-genres or were active for shorter periods. 

Their low scores on both PC1 and PC2 reflected their 

sparse connectivity and limited bridging capacity. 

This three-way classification provides a much richer 

story than a simple core/periphery label. It identifies not 

just the central players, but also the crucial second tier of 

"bridge" musicians who ensure the cohesion and 

evolution of the entire network. 

3.2.2 Case Study: A Stanford GraphBase Network (e.g., 

"Karate Club") 

For a smaller, classic network like Zachary's Karate Club 

[16], our framework also yielded insightful results. The 

PCA projection clearly separated the two factions that 

emerged after the club's split. PC1 cleanly separated the 

nodes loyal to the instructor versus those loyal to the club 

president. More interestingly, PC2, driven by the NBF 

metric, highlighted the single node that famously had ties 

to both factions before the split. This node appeared in an 

intermediate region on PC1 but had the highest PC2 score 

in the network, quantitatively identifying its unique 

"bridge" role in the conflict. 

3.3 Comparative Analysis 

We now compare the results of our framework with the 

three baseline methods across both synthetic and real-

world networks. The quantitative comparison on the 

synthetic network with moderate noise is summarized in 

Table 1. 

Table 1: Comparative Performance of Core-Periphery Detection Methods on a Synthetic Network 

Method Metric Value 

Our Proposed Framework 

(PCA + NBNC) 

Accuracy 96% 

Borgatti-Everett Algorithm [3] Accuracy 89% 
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Spectral Method (Cucuringu et 

al.) [6] 

Pearson Correlation (r) 0.88 

k-core Decomposition [15] Pearson Correlation (r) 0.75 

Performance on Synthetic Network (with moderate 

noise): 

● Our PCA Framework: Achieved 96% accuracy 

in classifying nodes, as shown in Table 1. It correctly 

identified not only the core and periphery but also 

differentiated between gateway and isolated peripheral 

nodes based on their PC2 scores. 

● Borgatti-Everett Algorithm [3]: Achieved 89% 

accuracy. It misclassified several core nodes with fewer 

core-connections as peripheral, and several highly-

connected peripheral nodes as core. Its binary output 

could not capture any intermediate roles. 

● Spectral Method [6]: Generated a coreness score 

that correlated well with the ground truth (Pearson r = 

0.88). However, by collapsing everything to one 

dimension, it failed to distinguish between a node deep in 

the core and a node that simply had a high degree but was 

not part of the cohesive core block. It also conflated 

gateway and isolated peripheral nodes, assigning them 

similar low scores. 

● k-core Decomposition [15]: This method 

produced a set of nested cores. While useful, the 

outermost core (highest k-value) included several 

gateway peripheral nodes and excluded some true core 

nodes that happened to have slightly lower degrees. The 

k-core number was only moderately correlated with the 

true core identity (r = 0.75). 

Insights on Jazz Network: 

● Our PCA Framework: As described above, 

provided a rich, three-way classification of "core," 

"bridge," and "periphery" nodes, offering a functional 

interpretation. 

● Borgatti-Everett Algorithm [3]: Partitioned the 

network into a very small core and a very large periphery. 

The core consisted only of the absolute highest-degree 

nodes, and the binary classification failed to recognize 

the important intermediate role of the bridge musicians. 

● Spectral Method [6]: Produced a ranking of 

musicians by "coreness." While the top-ranked nodes 

were indeed the core musicians we identified, the ranking 

flattened out quickly, making it hard to draw a 

meaningful line between groups. The bridge musicians 

were scattered throughout the middle-to-low end of the 

ranking, their unique role completely obscured. 

● k-core Decomposition [15]: The highest k-core 

in the jazz network was a large, dense component. While 

it contained the core musicians, it also included many of 

the bridge musicians, failing to distinguish between these 

two functionally distinct groups. 

In summary, the results consistently demonstrate that our 

proposed framework provides a more descriptive and 

accurate characterization of core-periphery structures. Its 

multidimensional output, driven by the specially 

designed NBNC metric, captures subtleties in network 

topology—particularly the role of bridge nodes—that are 

missed by methods producing binary partitions or single 

coreness scores. 

DISCUSSION 

The results presented in the previous section demonstrate 

the efficacy of our proposed PCA-based framework. In 

this section, we interpret these findings in the broader 

context of network science literature, discuss their 

implications, acknowledge the limitations of our study, 

and suggest promising avenues for future research. 

4.1 A Nuanced View of Core-Periphery Structure 

A central contribution of our work is its ability to move 

beyond the traditional, rigid dichotomy of core versus 

periphery. The network science community has 

increasingly recognized that this binary view is an 

oversimplification [9]. Our PCA-based approach directly 

addresses this by producing a continuous, 

multidimensional "map" of node roles. The primary axis, 

PC1, typically aligns with the classical notion of 

coreness, separating the dense, integrated center from the 

sparse, outlying regions. However, the inclusion of 

subsequent components, particularly PC2, which we 

found to be driven by the Neighborhood Bridging Factor 

(NBF), provides crucial additional information. 

This multidimensional view aligns perfectly with the 

clarified typology of C-P structures proposed by 

Gallagher et al. [9]. Their work emphasizes that C-P 

structures can vary in the richness of connections within 

the periphery and between the core and periphery. Our 

framework provides a natural way to visualize and 
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quantify these variations. For example, a network with a 

rich-club core and an isolated periphery would show a 

tight cluster at high PC1 values and a diffuse cloud at low 

PC1/low PC2 values. In contrast, a network where the 

periphery is richly connected to the core would show a 

strong correlation between PC1 and PC2 scores for 

peripheral nodes. By analyzing the shape, density, and 

orientation of node clusters in the PCA space, one can 

diagnose the specific type of C-P structure present in a 

network, an insight not readily available from a simple 

partition or a single ranking. 

4.2 The Role of Bridge Nodes 

Perhaps the most significant practical insight afforded by 

our framework is its ability to systematically identify and 

characterize "bridge" nodes. These are nodes that are 

structurally situated between the core and the periphery 

and are critical for network cohesion and dynamics. In 

many network processes, these bridges are paramount. In 

social movements, they are the individuals who connect 

dedicated activists to the broader public, enabling 

mobilization [1]. In innovation networks, they are the 

firms or researchers who connect disparate knowledge 

domains, fostering new discoveries. In biological 

networks, they may be proteins that mediate signals 

between different functional modules. 

Existing methods often struggle with these nodes. 

Discrete partitioning methods [3] are forced to classify 

them as either core or periphery, losing their distinct 

identity. Single-score methods like spectral analysis [6] 

or k-core decomposition [15] often assign them an 

intermediate score, but this score is indistinguishable 

from that of a "junior" core member or a "well-

connected" peripheral node. Our method, by using PC2 

as a dimension for "bridgingness," explicitly separates 

them. As seen in the jazz musician network analysis, the 

musicians identified as bridges formed a distinct cluster, 

quantitatively confirming their unique topological role. 

This ability to pinpoint and analyze the "critical 

periphery" [1] is a key advantage of our framework. 

4.3 Implications of the Findings 

The ability to generate a richer characterization of C-P 

structure has several important implications. 

First, it can lead to better models of dynamic processes 

on networks. For instance, identifying influential 

spreaders in a network is a critical problem [15]. While it 

is known that core nodes are often influential, bridge 

nodes can be even more critical for spreading information 

or contagions from the core to the periphery or between 

peripheral communities. A disease starting with a bridge 

node might achieve wider penetration than one starting 

with a core node that is only connected to other core 

nodes. Our framework provides the necessary inputs to 

build more accurate epidemiological or information 

diffusion models that account for these distinct node 

roles. 

Second, it enhances our understanding of network 

resilience and vulnerability. The resilience of 

interconnected networks to failures is a topic of major 

concern [7]. A network's robustness often depends 

critically on the connectivity between its core and 

periphery. A network whose C-P connection relies on a 

few, high-NBF bridge nodes is extremely vulnerable to 

targeted attacks on those nodes. Our framework can be 

used as a diagnostic tool to identify such vulnerabilities, 

which would be missed by analyses that only focus on the 

density of the core itself. 

Finally, our work has implications for network control 

and intervention. In organizational or social networks, if 

the goal is to improve integration between a central team 

and peripheral departments, our method can identify the 

key individuals who already act as bridges, who can then 

be empowered to enhance communication. Conversely, 

if the goal is to disrupt a covert network, targeting the 

bridge nodes identified by our method may be the most 

effective strategy to fragment the network. 

4.4 Limitations and Future Work 

Despite its promising results, our study has several 

limitations that open up avenues for future research. 

First, the current feature set, while effective, is small. It 

consists of only four features. Future work could explore 

incorporating a wider range of topological features, such 

as different centrality measures or local motif counts, to 

create an even richer feature space for the PCA. The 

challenge will be to add features that provide new 

information without introducing excessive noise or 

redundancy. 

Second, the computational complexity of the 

Neighborhood Bridging Factor (NBF), which relies on a 

greedy approximation for the set cover problem, could 

become a bottleneck for extremely large networks with 

high-degree nodes. While the greedy algorithm is 

efficient in practice [5], developing a faster, scalable 

proxy for "neighborhood bridging" would be a valuable 

contribution. 

Third, our current framework is designed for static, 

unweighted, and undirected networks. Many real-world 

systems are dynamic, have weighted connections, and are 

directed or even multiplex (containing multiple types of 

links) [4, 7]. Extending our framework to these more 

complex network types is a significant and important 

direction for future work. For example, in a multiplex 

network, one could construct a feature vector for each 

node that captures its role across all layers, providing a 

truly holistic view of its structural importance. 

https://aimjournals.com/index.php/ijngets


INTERNATIONAL JOURNAL OF NEXT-GENERATION 

ENGINEERING AND TECHNOLOGY (IJNGET) 

https://aimjournals.com/index.php/ijnget 

 

 

pg. 10 

Finally, our work focused on identifying a single, 

dominant C-P structure. However, large networks may 

contain multiple core-periphery pairs [17]. A potential 

future extension could involve first partitioning the 

network into large-scale communities (e.g., using 

algorithms like Louvain or Infomap) and then applying 

our PCA framework within each community to identify 

local C-P structures. This would provide a hierarchical 

and multi-scale description of the network's topology. 

CONCLUSION 

In this paper, we introduced and validated a novel 

framework for characterizing core-periphery structures in 

complex networks. Our approach makes two primary 

contributions to the field. First, we proposed the 

Neighborhood-based Bridge Node Centrality (NBNC), a 

metric specifically engineered to capture a node's dual 

role in maintaining local cohesion and bridging to 

external regions. Second, we demonstrated that by 

applying Principal Component Analysis to a feature 

space built around this metric, we can generate a low-

dimensional, interpretable map of network topology that 

goes far beyond the limitations of existing methods. 

Our experiments on both synthetic and real-world 

networks showed that this PCA-based framework not 

only accurately identifies core and peripheral nodes but 

also, crucially, distinguishes a third class of "bridge" 

nodes that are vital for network cohesion and dynamics. 

This provides a more nuanced, continuous, and 

functionally relevant understanding of C-P organization, 

aligning with contemporary theories that call for a move 

beyond simple binary classifications [9]. 

The ability to produce a richer, multidimensional 

characterization of one of the most fundamental 

mesoscale structures in networks has significant practical 

implications for modeling dynamic processes, assessing 

network vulnerability, and designing effective 

interventions. While we have outlined several avenues 

for future work, including extensions to dynamic and 

multiplex networks, the current framework already 

stands as a robust, flexible, and powerful tool for network 

scientists. By revealing the subtle spectrum of roles that 

nodes play—from the heart of the core, through the 

critical bridges, to the farthest periphery—our work 

contributes to a deeper and more complete understanding 

of the complex architecture of the connected world. 
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