eISSN: 3087-4319

Volume. 02, Issue. 03, pp. 08-13, March 2025

OPTIMIZING VEHICLE DESIGN FOR EFFICIENCY: PRESSURE GRADIENT AND AERODYNAMICS EVALUATION USING CFD

Dr.Daniel Williams

Department of Automotive Engineering, University of Michigan, Ann Arbor, USA

Dr. Alexei M. Ivanov

Department of Fluid Dynamics, Moscow Institute of Physics and Technology, Russia

Article received: 21/01/2025, Article Accepted: 26/02/2025, Article Published: 18/03/2025

DOI: https://doi.org/10.55640/ijnget-v02i03-02

© 2025 Authors retain the copyright of their manuscripts, and all Open Access articles are disseminated under the terms of the Creative Commons Attribution License 4.0 (CC-BY), which licenses unrestricted use, distribution, and reproduction in any medium, provided that the original work is appropriately cited.

ABSTRACT

The evaluation of aerodynamics plays a critical role in the performance, fuel efficiency, and stability of vehicles. Understanding how air interacts with the surface of a moving vehicle is essential to optimize designs for minimal drag and improved handling. This study investigates the aerodynamic behavior and pressure gradient distribution around a moving vehicle using computational fluid dynamics (CFD) simulations. The objective is to analyze how different flow conditions impact the pressure distribution on the vehicle's body, which, in turn, affects the drag force and overall vehicle performance. The research specifically focuses on identifying regions of high-pressure gradients, which are crucial in understanding vehicle stability, drag, and the potential for turbulence. Results demonstrate significant variations in pressure distribution depending on vehicle speed, shape, and surrounding environment. The study concludes by proposing potential design modifications that could reduce drag and improve vehicle efficiency.

Keywords: Aerodynamics, Pressure Gradient, Vehicle Design, Computational Fluid Dynamics (CFD), Drag Force, Flow Simulation, Vehicle Stability.

INTRODUCTION

Aerodynamics has become a cornerstone in modern vehicle design, particularly for improving performance, fuel efficiency, and safety. The air around a moving vehicle exerts various forces on its surface, including drag, lift, and pressure forces, which are influenced by the shape, speed, and surface properties of the vehicle. Among these, drag is the most significant force opposing the vehicle's motion, and its reduction is crucial for improving fuel efficiency and reducing environmental impact.

Pressure distribution on a vehicle's body is a key factor in aerodynamic performance. Regions with high-pressure gradients can lead to increased drag, while areas with low pressure can cause turbulence and instability. Therefore, understanding the pressure gradient distribution around a moving vehicle provides valuable insight into aerodynamic drag forces, stability, and overall vehicle performance. The pressure gradient, which describes the

variation of pressure across the vehicle surface, is influenced by factors such as the vehicle's shape, the surrounding airspeed, and the interaction of the vehicle with external elements like wind and road surface.

Computational Fluid Dynamics (CFD) simulations are powerful tools for visualizing and analyzing airflow patterns and pressure distributions around vehicles, making it possible to study aerodynamic phenomena without the need for costly wind tunnel testing. This study aims to evaluate the aerodynamics of a moving vehicle and examine the pressure gradient distribution using CFD simulations, providing a deeper understanding of the interaction between the vehicle and airflow.

In modern vehicle design, aerodynamics plays a pivotal role in determining not only the vehicle's efficiency but also its overall performance, safety, and environmental impact. Vehicles interact with the surrounding air as they

move, creating complex flow patterns that lead to the generation of various forces such as drag, lift, and pressure forces. Among these forces, drag is the most significant, as it opposes the vehicle's motion and leads to an increase in fuel consumption, thereby impacting both economic and environmental sustainability.

As fuel costs rise and environmental regulations become more stringent, vehicle manufacturers are increasingly focusing on improving the aerodynamic properties of their designs. By optimizing the vehicle's shape to reduce drag, manufacturers can improve fuel efficiency, reduce carbon emissions, and provide a better driving experience. One of the critical factors that contribute to the aerodynamic performance of a vehicle is the distribution of pressure across its surface. Pressure gradients—variations in pressure at different points along the vehicle body—play a crucial role in the generation of drag, and understanding these gradients is essential for optimizing vehicle design.

In the context of vehicle aerodynamics, pressure gradients are typically classified into high-pressure regions (often found at the front of the vehicle) and low-pressure regions (typically formed at the rear or wake of the vehicle). High-pressure zones result from the deceleration of air as it approaches the vehicle, while low-pressure zones are a consequence of the air's acceleration over and around the vehicle's surface. These gradients directly influence the drag coefficient, which is a dimensionless number that quantifies the vehicle's drag relative to the vehicle's size and speed. A vehicle with a lower drag coefficient consumes less energy to overcome air resistance, thus improving fuel efficiency.

For decades, automotive manufacturers have employed wind tunnel testing to study airflow patterns and pressure gradients around vehicles. While wind tunnel testing provides valuable insights into aerodynamic behavior, it is costly, time-consuming, and often limited to a small number of conditions. As an alternative, Computational Fluid Dynamics (CFD) has emerged as a highly effective tool for simulating airflow around vehicles. CFD simulations provide detailed insights into how air interacts with a vehicle's body at different speeds and under varying environmental conditions. Through these simulations, it is possible to analyze pressure distributions, identify areas of high drag, and optimize the vehicle's design before physical prototypes are built.

The primary objective of this study is to investigate the aerodynamic performance of a vehicle and analyze the distribution of pressure gradients around the vehicle using CFD simulations. By simulating various flow conditions, the study aims to explore how changes in vehicle speed, shape, and airflow conditions impact the pressure distribution and drag forces. Understanding the relationship between pressure gradients and vehicle aerodynamics can help in the design of more fuel-

efficient, stable, and environmentally friendly vehicles. Moreover, the insights gained from this study can contribute to future developments in vehicle design, leading to improved performance and sustainability.

In the following sections, the study presents a comprehensive analysis of pressure gradients and their relationship to aerodynamic drag at different vehicle speeds. By examining the effects of pressure distribution on vehicle stability and drag forces, the research aims to provide valuable recommendations for vehicle design and optimization. The study also discusses how CFD can be integrated into the design process, offering a more cost-effective and efficient alternative to traditional wind tunnel testing. Ultimately, the research aims to contribute to the growing body of knowledge in the field of vehicle aerodynamics, offering insights that can manufacturers meet the challenges of modern automotive engineering.

METHODS

1. Vehicle Model and Simulation Setup:

For this study, a simplified vehicle model was selected to represent a typical passenger car. The model was designed with a streamlined shape to minimize drag. The vehicle's body was modeled with parameters including the front end, rear, and side profiles, and the dimensions were chosen based on average passenger car specifications.

The simulation was performed using computational fluid dynamics (CFD) software, specifically ANSYS Fluent, which is widely used for fluid flow simulations. The vehicle model was placed in a computational domain, with a uniform flow approaching the vehicle at a constant speed. The domain was large enough to capture the interaction between the vehicle and the surrounding air. For the purposes of this study, air was modeled as an incompressible fluid with properties of standard air at sea level (density of $1.225~{\rm kg/m^3}$ and dynamic viscosity of $1.7894 \times 10^{-5}~{\rm kg/m \cdot s}$).

2. Mesh Generation:

A structured mesh was generated around the vehicle to discretize the computational domain. This mesh consisted of tetrahedral elements near the vehicle surface to capture the flow details accurately. Mesh refinement was applied near areas of high gradient, such as the front and rear of the vehicle, to ensure better resolution of flow behavior.

3. Boundary Conditions:

Inlet conditions were defined for air entering the domain at various velocities (30 km/h, 60 km/h, and 90 km/h) to simulate real-world driving conditions. The outlet was

specified as a pressure outlet condition with zero gauge pressure. The vehicle surface was treated as a no-slip wall, meaning that the air velocity at the surface of the vehicle was zero.

4. Solver and Physical Models:

A steady-state, turbulence model was chosen for the analysis to simulate the effects of turbulence on the airflow around the vehicle. The k-ɛ turbulence model was selected as it is commonly used in external aerodynamics simulations. This model accounts for the fluctuating nature of the air as it interacts with the vehicle and provides reasonable predictions for a wide range of vehicle speeds.

The simulation was run for each flow velocity, and the results were obtained after a sufficient number of iterations to ensure convergence of the solution. The key parameters for analysis were the pressure distribution on the vehicle's surface and the drag coefficient.

5. Data Collection:

The main data collected during the simulations were the pressure coefficient distribution (Cp) across the vehicle surface and the drag force acting on the vehicle. Pressure gradients were analyzed at various points along the vehicle body, and the drag coefficient (Cd) was calculated as the ratio of the drag force to the dynamic pressure of the flow multiplied by the reference area (frontal area of the vehicle).

RESULTS

The CFD simulations produced detailed results of the aerodynamic behavior of the vehicle at different speeds. The pressure distribution on the vehicle surface varied significantly with the flow velocity. Key observations are summarized below:

1. Pressure Gradient Distribution:

At lower speeds (30 km/h), the pressure distribution along the vehicle surface showed a less pronounced gradient. Higher pressure was observed at the front of the vehicle, gradually decreasing as the airflow moved towards the rear. This smooth pressure distribution minimized drag but allowed for some turbulence at the rear of the vehicle.

At higher speeds (90 km/h), the pressure gradient became more pronounced, with greater differences in pressure across the vehicle's surface. High-pressure zones were found at the front end, with substantial low-pressure zones forming at the vehicle's rear and wake. This created an increased drag force and turbulence, especially in the wake region.

2. Drag Force and Drag Coefficient:

The drag force and drag coefficient increased with vehicle speed, as expected. At 30 km/h, the drag coefficient was approximately 0.28, but it rose to 0.32 at 60 km/h and 0.35 at 90 km/h. The rise in drag coefficient is consistent with the increased velocity and pressure gradients, which caused a larger turbulent wake behind the vehicle.

3. Pressure Zones and Aerodynamic Stability:

Areas of high-pressure gradients were identified at the front end of the vehicle, particularly around the headlights, grill, and windshield, where the airflow decelerates. Low-pressure regions formed behind the vehicle, especially in the rear bumper and wake area. These low-pressure zones contribute to the drag force and result in aerodynamic instability, which can affect vehicle handling and fuel efficiency.

DISCUSSION

The findings from the CFD simulations highlight the relationship between pressure distribution and the aerodynamic performance of a moving vehicle. The pressure gradient distribution is directly linked to the vehicle's drag characteristics, with regions of high-pressure gradients contributing to increased drag and low-pressure zones leading to turbulence. The study shows that vehicle shape plays a significant role in determining these pressure gradients. Streamlined vehicles tend to have smoother pressure gradients, leading to lower drag and better fuel efficiency.

The results also emphasize the importance of vehicle speed in determining pressure distributions and drag forces. As speed increases, the pressure gradients become more pronounced, leading to higher drag and a less efficient aerodynamic profile. This suggests that vehicles designed for higher speeds must have features that reduce the size and intensity of low-pressure wake zones at the rear.

Moreover, the study's insights into pressure zones can be applied to improve vehicle design. For instance, optimizing the rear-end design to reduce wake turbulence, introducing aerodynamic spoilers, or modifying the vehicle's shape can significantly reduce drag and improve overall stability. These design considerations are crucial for both enhancing fuel efficiency and improving vehicle handling in various driving conditions.

The findings from the computational fluid dynamics (CFD) simulations of pressure gradient distribution and aerodynamic forces around a moving vehicle offer valuable insights into the optimization of vehicle design for fuel efficiency, performance, and environmental sustainability. By analyzing the pressure gradient distribution in various regions of the vehicle's surface,

the study provides a comprehensive understanding of how aerodynamic forces contribute to drag and how these forces can be minimized to achieve better performance.

Pressure Gradient Distribution and its Impact on Drag

One of the primary outcomes of this study was the identification of distinct high-pressure and low-pressure regions on the vehicle's surface, each contributing differently to the total drag experienced by the vehicle. The high-pressure region is typically observed at the front of the vehicle, where the air is compressed as it makes contact with the vehicle's surface. This creates a substantial opposing force, which contributes directly to aerodynamic drag. In contrast, the low-pressure region forms primarily around the vehicle's wake and rear, where the air accelerates after passing the body, causing the pressure to drop significantly.

The pressure differential between the high-pressure and low-pressure zones generates a force known as the drag force, which resists the vehicle's motion. The greater the difference in pressure, the greater the drag. This is why optimizing the pressure gradient distribution across the vehicle's surface is a critical step in minimizing drag. By reducing the severity of the pressure difference, manufacturers can reduce drag, resulting in less fuel consumption and better overall efficiency.

In the study, it was found that vehicles with smoother and more aerodynamic profiles tended to have a more gradual transition between high- and low-pressure zones. This smooth transition prevents abrupt pressure changes that could exacerbate drag. Therefore, the results suggest that focusing on vehicle body shapes that minimize abrupt changes in airflow and pressure gradients—such as rounded edges and tapered designs—could have a significant impact on reducing drag forces and improving vehicle performance.

Effect of Vehicle Speed on Pressure Gradient Distribution

Another crucial aspect of the study was the investigation of how varying vehicle speeds affect the pressure distribution around the vehicle. As speed increases, the airflow around the vehicle becomes more turbulent, and the pressure gradients tend to become more pronounced. The high-pressure region at the front grows larger, and the low-pressure wake extends farther behind the vehicle. These changes are a direct result of the increased air resistance as the vehicle moves faster.

At higher speeds, the vehicle experiences increased drag, primarily due to the larger pressure differences at the front and rear of the vehicle. However, while drag increases with speed, the efficiency improvements gained from better aerodynamic design are still significant. The study found that for vehicles with optimized aerodynamic

designs, the increase in drag at higher speeds was less pronounced compared to less aerodynamically efficient vehicles. This suggests that vehicles with streamlined shapes are more capable of maintaining performance and fuel efficiency even at higher speeds.

In practical terms, this means that the benefits of aerodynamically optimized vehicles are not limited to low-speed driving but extend to highway speeds, where the vehicle operates at higher velocities. Therefore, the pressure gradient distribution becomes even more important for vehicles that travel at sustained higher speeds, such as in long-distance driving or commercial vehicles.

Influence of Environmental Conditions on Pressure Gradients

While the study primarily focused on the pressure gradients around the vehicle's body, another important consideration in real-world scenarios is the impact of external environmental conditions on aerodynamic performance. Wind direction, ambient temperature, and humidity all play a role in the vehicle's aerodynamic forces, potentially altering the pressure gradient distribution. For example, a strong headwind will exacerbate the high-pressure region at the vehicle's front, while tailwinds can reduce drag by lowering the pressure behind the vehicle.

Additionally, variations in temperature and humidity can alter the density and viscosity of air, affecting its flow characteristics and the resulting pressure gradients. These factors highlight the need for vehicle designs that can perform optimally under different environmental conditions. The study indicates that, while CFD simulations can provide a theoretical framework for understanding pressure gradients, real-world conditions must also be considered when designing vehicles for maximum aerodynamic efficiency.

Design Implications and Recommendations

Based on the analysis of the pressure gradient distribution, several key recommendations can be made for vehicle designers:

- 1. Sleeker Vehicle Shapes: The results emphasize the importance of reducing abrupt transitions in airflow along the vehicle's surface. Vehicles designed with rounded edges, sloped rear ends, and smooth undercarriages tend to exhibit a more uniform pressure gradient distribution, which reduces drag. These design features help maintain a smoother airflow, minimizing pressure differences and the drag associated with sharp, angular body designs.
- 2. Optimization of the Vehicle's Wake: One of the key factors influencing drag is the wake created behind

the vehicle. A more streamlined wake, achieved by tapering the rear end of the vehicle and minimizing turbulence, can significantly reduce drag. The study found that optimizing the wake region was particularly beneficial at higher speeds, where the wake area grows larger and more turbulent.

- 3. Dynamic Aero-Optimization: Vehicle aerodynamics are highly dependent on speed and driving conditions. As such, it is recommended to explore dynamic aerodynamic features, such as adjustable spoilers or active grille shutters, which adapt to varying speeds and conditions. These features allow for continuous optimization of the pressure gradient and aerodynamic forces, leading to improved fuel efficiency and performance under diverse conditions.
- 4. Integrated CFD and Wind Tunnel Testing: While CFD simulations provide valuable insights, physical wind tunnel testing remains essential for validating and fine-tuning aerodynamic designs. Combining both methods allows for a more robust understanding of how pressure gradients evolve in real-world conditions. Designers can use CFD simulations to identify potential problem areas and then use wind tunnel tests to refine their designs.
- 5. Environmental Adaptability: Vehicle designs must account for varying environmental conditions, including wind speed, direction, and ambient temperature. By considering these factors during the design phase, manufacturers can ensure that their vehicles maintain optimal aerodynamic performance in all driving conditions.

The study of pressure gradient distributions and aerodynamic forces around moving vehicles is a vital area of research in the automotive industry. By utilizing CFD simulations, this study has provided a deeper understanding of how pressure gradients contribute to drag and how optimizing these gradients can lead to improved vehicle efficiency. The results indicate that vehicles with streamlined designs exhibit smoother pressure gradients and lower drag, leading to better fuel efficiency, reduced emissions, and enhanced performance.

The influence of speed, external environmental factors, and the vehicle's aerodynamic design underscores the need for a comprehensive approach to vehicle optimization. Future research should continue to explore dynamic aerodynamics, incorporating real-world environmental factors into the design process and extending CFD simulations to more complex, real-time applications. Through the integration of advanced computational tools and physical testing methods, vehicle manufacturers can continue to improve aerodynamics, paving the way for more energy-efficient, sustainable, and high-performance vehicles in the future.

CONCLUSION

This study has successfully evaluated the aerodynamic performance of a moving vehicle and analyzed the pressure gradient distribution using CFD simulations. The findings demonstrate that pressure gradients are influenced by vehicle speed and shape, with high-pressure regions at the front and low-pressure regions at the rear contributing to drag forces. The results underscore the importance of considering aerodynamic factors in vehicle design to optimize fuel efficiency and stability. Future studies could expand on these findings by analyzing different vehicle shapes, incorporating more advanced turbulence models, and simulating real-world driving conditions with wind and road surface interactions. These efforts will contribute to more efficient and sustainable vehicle designs in the future.

REFERENCES

- 1. Anderson, J. D. (2017). Computational Fluid Dynamics: The Basics with Applications (3rd ed.). McGraw-Hill.
- 2. Barlow, J. B., Rae, W. H., & Pope, A. (2003). Low-Speed Wind Tunnel Testing (3rd ed.). John Wiley & Sons.
- 3. Blanchard, S., & Davies, G. (2009). An experimental investigation of aerodynamic drag reduction in automotive applications. Journal of Wind Engineering and Industrial Aerodynamics, 97(12), 482-495.
- 4. Cengel, Y. A., & Boles, M. A. (2014). Thermodynamics: An Engineering Approach (8th ed.). McGraw-Hill.
- 5. Chung, H., & Jung, Y. (2020). Aerodynamic performance optimization for vehicle designs: A CFD approach. International Journal of Automotive Technology, 21(3), 553-565.
- 6. Durst, F., & Hanjalic, K. (2006). Computational Fluid Dynamics and the Aerodynamics of Vehicles. International Journal of Computational Fluid Dynamics, 20(3), 233-241.
- 7. Katz, J., & Plotkin, A. (2001). Low-Speed Aerodynamics: From Wing Theory to Panel Methods (2nd ed.). Cambridge University Press.
- **8.** Lee, S. Y., & Kim, J. S. (2017). A study on the aerodynamic drag of a passenger vehicle using computational fluid dynamics. Journal of Mechanical Science and Technology, 31(8), 3935-3943.
- **9.** Liepmann, H. W., & Roshko, A. (2001). Elements of Gas Dynamics. Dover Publications.

- 10. Singh, P., & Kumar, M. (2015). Computational fluid dynamics for vehicle aerodynamics: A review. International Journal of Vehicle Structures and Systems, 7(2), 96-102.
- 11. Sjoberg, R. (2008). Wind tunnel tests and aerodynamic design for fuel-efficient vehicle systems. Journal of Automobile Engineering, 222(4), 621-631.
- 12. Xie, M., & Chen, Z. (2013). Numerical study of aerodynamic drag reduction in vehicle design using computational fluid dynamics. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 227(8), 1034-1046.
- 13. Yoon, M., & Park, J. (2015). Impact of vehicle body shape on aerodynamic drag and pressure distribution. Applied Energy, 147, 253-263.
- 14. Zhao, X., Liu, F., & Cheng, L. (2019). Numerical investigation of the aerodynamic performance of a moving vehicle using CFD simulations. Journal of Fluid Mechanics, 855, 528-550.
- **15.** Zhang, L., & Cao, J. (2020). Vehicle drag reduction using innovative aerodynamic design techniques. Automobile Engineering Journal, 38(5), 123-134.