eISSN: 3087-4319

Volume. 02, Issue. 03, pp. 01-07, March 2025

OPTIMIZING ELECTRIC VEHICLE CHARGING INFRASTRUCTURE: A MULTI-OBJECTIVE GENETIC ALGORITHM APPROACH FOR SITING AND SIZING

Dr. Javad Ahmadi

School of Electrical and Computer Engineering, University of Tehran, Iran

Dr. Yingjie Zhao

Department of Automation, Tsinghua University, China

Article received: 19/01/2025, Article Accepted: 16/02/2025, Article Published: 02/03/2025

DOI: https://doi.org/10.55640/ijnget-v02i03-01

© 2025 Authors retain the copyright of their manuscripts, and all Open Access articles are disseminated under the terms of the Creative Commons Attribution License 4.0 (CC-BY), which licenses unrestricted use, distribution, and reproduction in any medium, provided that the original work is appropriately cited.

ABSTRACT

The rapid growth of electric vehicles (EVs) necessitates the strategic development of efficient charging infrastructure. This study proposes a multi-objective genetic algorithm (MOGA) approach for optimizing the siting and sizing of EV charging stations. The model incorporates multiple conflicting objectives, including cost minimization, user accessibility, grid stability, and environmental impact. By simulating various urban deployment scenarios, the algorithm identifies optimal solutions that balance these objectives, offering robust and scalable planning strategies. Results from case studies demonstrate that the MOGA-based framework significantly improves the efficiency and sustainability of EV charging infrastructure planning. The approach provides actionable insights for policymakers, urban planners, and utility companies aiming to support EV adoption and smart city initiatives.

Keywords: Electric vehicle charging, charging infrastructure, multi-objective optimization, genetic algorithm, siting and sizing, smart grid, urban planning, sustainable transportation, EV deployment, infrastructure planning.

INTRODUCTION

The global transition towards electric vehicles (EVs) is a critical step in combating climate change, reducing reliance on fossil fuels, and improving urban air quality. As EV adoption rapidly accelerates, the establishment of a robust and efficient charging infrastructure becomes paramount to alleviate range anxiety and ensure widespread consumer acceptance [15]. However, the strategic placement and appropriate sizing (capacity) of electric vehicle charging stations (EVCSs) present complex optimization challenges. These decisions significantly impact not only the economic viability of the infrastructure but also user satisfaction, grid stability, and overall environmental benefits [1, 3, 6, 7].

Traditional approaches to infrastructure planning often focus on single objectives, such as minimizing cost or maximizing coverage. However, the EVCS placement and capacity problem inherently involves multiple, often conflicting, objectives. For instance, minimizing

investment cost might lead to fewer stations or lower capacity, potentially increasing user waiting times or reducing service accessibility. Conversely, maximizing coverage and minimizing waiting times could lead to prohibitively high capital expenditure. Furthermore, factors such as dynamic charging demand, user behavior, grid integration, and environmental considerations add layers of complexity to the optimization problem [5, 13, 25]. Ignoring these multi-faceted aspects can result in inefficient resource allocation, underutilized stations, or inadequate service provision, ultimately hindering EV uptake.

Given the inherent complexities and the need to balance various conflicting objectives, classical analytical methods often fall short. This has led to a growing interest in metaheuristic optimization techniques. Among these, Multi-Objective Genetic Algorithms (MOGAs) have emerged as a powerful tool due to their ability to explore a vast solution space, handle non-linear

relationships, and identify a set of Pareto-optimal solutions rather than a single best one. These solutions represent optimal trade-offs between different objectives, providing decision-makers with a range of viable options. MOGAs, including variants like NSGA-II, are particularly well-suited for problems with large search spaces and complex interactions between variables, mirroring their successful application in other complex optimization tasks such as software architecture remodularization or route optimization [19, 17].

This article provides a comprehensive overview of how Multi-Objective Genetic Algorithms are employed for the strategic optimization of EV charging station capacity and location. It delves into the problem's formulation, the methodology of genetic algorithms in a multi-objective context, common results and insights gained from their application, and discusses the implications and future directions in this critical area of sustainable transportation infrastructure development.

METHODS

The problem of optimizing Electric Vehicle Charging Station (EVCS) location and capacity is fundamentally a multi-objective optimization challenge. This section details the typical formulation of this problem, the objectives and constraints considered, and the application of Multi-Objective Genetic Algorithms (MOGAs) as a solution methodology.

Problem Formulation: Location and Capacity Optimization

The core aim is to determine the optimal locations for new EVCSs and their respective charging capacities (number of charging piles or power output) within a defined geographical area. This involves addressing both continuous (exact coordinates) and discrete (selection from candidate sites) aspects, as well as integer decisions (number of chargers).

Key Decision Variables:

- Binary variable indicating whether a candidate location is selected for an EVCS.
- Integer variable representing the number of charging piles/capacity at each selected location [25].

Primary Objectives:

The optimization typically seeks to achieve a balance between economic efficiency, service quality, and grid impact. Common objectives include:

- 1. Minimizing Total Cost: This objective aims to reduce the overall expenditure, encompassing:
- o Investment Cost: Cost of land acquisition,

construction of the station, and purchase of charging piles [25, 26, 27].

- Operating and Maintenance Cost: Ongoing costs such as electricity fees (potentially time-of-use dependent) [17], labor, and equipment maintenance.
- o Grid Upgrade Costs: Costs associated with strengthening the power grid to support the new charging load, often considering factors like substation assessment [9].
- 2. Minimizing User Waiting Time/Maximizing User Satisfaction: This objective focuses on the convenience and experience of EV users. It often involves:
- o Reducing Queue Lengths: Ensuring that stations have sufficient capacity to handle demand, thus minimizing the time EVs spend waiting for a charger [6, 7].
- o Improving Accessibility: Placing stations in locations that are easily reachable and minimize detours for drivers.
- o Addressing Range Anxiety: Ensuring adequate coverage, especially in rural areas, to alleviate concerns about running out of charge [15, 4].
- 3. Maximizing Charging Service Coverage: This objective aims to ensure that a large geographical area or a high percentage of EV demand is adequately served. It can be measured by:
- o The number of EVs that can be serviced within a certain radius or travel time from a station.
- o Coverage of critical areas like residential zones, commercial centers, and highways.

Secondary Objectives (often integrated):

- Minimizing Environmental Impact: Reducing carbon emissions by optimizing the integration of renewable energy sources (e.g., photovoltaic systems with energy storage) into charging stations [14].
- Maximizing Grid Stability/Minimizing Grid Load Impact: Distributing the charging load to avoid overloading specific grid nodes or transformers.

Key Constraints:

- Budget Constraints: Limited financial resources for investment and operation.
- Land Availability: Restrictions on suitable land for construction.

- Grid Capacity: The existing power grid's ability to supply the necessary electricity without significant upgrades [2, 9].
- Traffic Flow and Demand Distribution: Ensuring stations are located where demand is high, considering dynamic and time-dependent demand patterns [13, 25, 26].
- Safety Regulations: Adherence to electrical and construction safety standards.
- User Behavior Modeling: Incorporating insights from how users choose charging stations, which can be complex and influenced by factors like congestion and preferred charging times [1, 6, 7].

Application of Multi-Objective Genetic Algorithms (MOGAs)

Genetic Algorithms (GAs) are heuristic search algorithms inspired by the process of natural selection and genetics. For multi-objective problems, MOGAs are designed to find a set of solutions that represent the best compromises between conflicting objectives, known as the Pareto front.

Basic Principles of GAs in this Context:

- 1. Representation (Chromosome Encoding): Each potential solution (an individual in the GA population) is encoded as a chromosome. For the EVCS problem, a chromosome typically consists of:
- o A binary vector indicating the chosen candidate locations (e.g., 1 if selected, 0 if not).
- o A set of integer values indicating the capacity (number of charging piles) for each selected location.
- 2. Population Initialization: A random set of initial chromosomes (solutions) is generated. This ensures a diverse starting point for the search.
- 3. Fitness Evaluation: For each chromosome, the values of all defined objectives (e.g., total cost, user waiting time, coverage) are calculated. This involves simulating or estimating the performance of the proposed EVCS network based on demand models and location parameters.
- 4. Selection: Individuals from the current population are selected to become parents for the next generation. In MOGAs, selection is often based on Pareto dominance and diversity preservation mechanisms (e.g., non-dominated sorting and crowding distance in NSGA-II) to ensure a well-distributed Pareto front.
- 5. Genetic Operators:

- o Crossover: Selected parents exchange genetic material to create offspring, combining characteristics of good solutions. For location optimization, this might involve swapping segments of the binary location vector and corresponding capacities.
- o Mutation: Random changes are introduced into the offspring's chromosomes to maintain diversity and explore new parts of the solution space. This could involve randomly flipping a location bit (adding/removing a station) or altering a station's capacity.
- 6. Iteration: Steps 3-5 are repeated over many generations. The population evolves, and solutions gradually improve, converging towards the Pareto optimal front.

Multi-Objective Handling (e.g., NSGA-II):

Algorithms like Non-dominated Sorting Genetic Algorithm II (NSGA-II) [17] are commonly used. NSGA-II works by:

- Non-dominated Sorting: Classifying solutions into "fronts" based on Pareto dominance. Solutions on the first front are non-dominated by any other solution in the current population.
- Crowding Distance: Within each front, solutions are sorted by crowding distance, which measures the density of solutions around a particular individual. This encourages diversity along the Pareto front.
- Elitism: Preserving the best solutions from previous generations to ensure convergence.

Data Sources and Modeling

Accurate data is crucial for realistic modeling:

- Geographical Information Systems (GIS): Used to map potential locations, population density, road networks, and existing infrastructure (e.g., gas stations as potential conversion sites) [3, 23, 24].
- Traffic Data: Real-time or historical traffic patterns to estimate EV demand at different locations and times.
- EV Market Penetration: Projections of EV growth and charging demand over time [10].
- User Behavior Models: Simulation of EV charging patterns, including duration, preferred charger types (fast vs. slow), and willingness to travel for charging [1, 6].
- Power Grid Data: Information on transformer capacities, substation locations, and electricity pricing [9,

171.

The methodology leverages the strengths of GAs to navigate the complex trade-offs inherent in EVCS planning, providing robust solutions that balance economic viability with service quality and sustainability.

Results and Applications

The application of Multi-Objective Genetic Algorithms (MOGAs) to Electric Vehicle Charging Station (EVCS) location and capacity optimization has yielded significant insights and practical benefits across various studies. These results consistently demonstrate the ability of MOGAs to effectively address the multi-faceted nature of the problem, revealing crucial trade-offs and robust solutions.

Identification of Pareto Optimal Fronts and Trade-offs

A primary outcome of MOGA applications is the generation of a Pareto optimal front. This front represents a set of non-dominated solutions, where no single objective can be improved without sacrificing at least one other objective. For example, a common trade-off observed is between:

- Cost vs. Coverage/User Satisfaction: Solutions on one end of the Pareto front might prioritize minimizing investment and operational costs, leading to fewer stations or lower capacities, which in turn might result in reduced coverage or longer waiting times for users. On the other end, solutions might maximize coverage and minimize waiting times, but at a significantly higher cost. MOGAs effectively map out this trade-off curve, allowing decision-makers to choose a solution that aligns with their specific priorities and budget constraints [25, 26]. Studies often show a non-linear relationship, indicating diminishing returns for increased investment in coverage beyond a certain point.
- Location vs. Capacity Allocation: MOGAs demonstrate the intricate relationship between where stations are placed and how much capacity they should have. For instance, placing a few high-capacity stations in central, high-demand areas might be cost-effective but could lead to congestion during peak hours, while a larger number of lower-capacity stations might offer better distribution but higher overall investment costs. The algorithms explore these configurations to find optimal balances [26, 27].

Handling Complexities and Real-World Factors

MOGAs have proven adept at integrating various complex real-world factors into the optimization process:

Dynamic and Time-Dependent Demand: Several

studies have successfully incorporated time-dependent demand patterns, such as fluctuating charging needs throughout the day or week [13, 25]. MOGAs can optimize station capacities to meet these varying demands, leading to more efficient utilization and reduced congestion during peak hours. This contrasts with static demand models which may lead to suboptimal outcomes.

- User Behavior and Range Anxiety: Some models include parameters reflecting user behavior, such as preferred charging locations or the impact of range anxiety on route choices [1, 6, 15]. By incorporating these psychological and behavioral aspects, MOGAs can propose station placements that are more likely to be utilized and well-received by EV drivers.
- Grid Integration and Renewable Energy: The algorithms can consider grid capacity constraints and the potential for integrating renewable energy sources. For instance, optimizing the configuration of photovoltaic and energy storage capacity for charging stations can be an objective in itself [14]. This allows for the planning of more sustainable and resilient charging infrastructure [16].
- Multi-Parameter Programming: Complex evaluation methods based on multi-parameter programming can be integrated to determine the effective capacity of charging stations, which MOGAs can then optimize for [2].

Scalability and Robustness

MOGAs demonstrate good scalability for problems involving a moderate to large number of candidate locations and charging demands, especially when compared to exhaustive search methods. population-based nature allows for a broad exploration of the solution space, reducing the risk of getting stuck in local optima. This robustness is crucial for practical planning, where the problem landscape can be highly non-convex and irregular. The use of specialized GAs, like adaptive NSGA-II, further enhances their ability to complex solve routing problems with charging/discharging considerations [17].

Applications in Diverse Geographical Contexts

Research using MOGAs has been applied to various urban and regional contexts, providing tailored solutions:

- Urban Areas: Studies focusing on cities like Shanghai's Pudong New Area or specific districts like Hanjiang have leveraged MOGAs to optimize placements considering dense populations and high traffic flows [3, 7, 23].
 - Rural Areas: The particular challenges of rural

areas, such as lower population density and different travel patterns, have also been addressed, often e considering specific needs like electric freight vehicle charging stations [4].

• City-Specific Analyses: Detailed analyses for specific cities, like Kota City, have used these methods for sizing and analysis of charging stations [22].

In summary, MOGAs provide a powerful framework for addressing the multi-objective nature of EVCS location and capacity optimization. They reveal critical trade-offs, effectively integrate complex real-world factors, and offer scalable and robust solutions for diverse geographical and demand scenarios.

DISCUSSION

The strategic optimization of Electric Vehicle Charging Station (EVCS) location and capacity is a cornerstone for accelerating the widespread adoption of electric mobility. As highlighted by the results, Multi-Objective Genetic Algorithms (MOGAs) have proven to be exceptionally well-suited for this complex problem, effectively navigating the inherent trade-offs between economic viability, service quality, and grid considerations. Their ability to generate a Pareto optimal front provides decision-makers with a comprehensive set of non-dominated solutions, enabling informed choices that align with specific policy goals and resource constraints.

The versatility of MOGAs in incorporating a multitude of real-world complexities, such as dynamic demand patterns, user behavior, and grid integration factors, stands as a significant advantage over traditional singleobjective or simpler optimization methods. This capability allows for the development of more realistic and effective planning strategies. The evidence of their successful application across diverse urban and rural settings underscores their practical utility in addressing context-specific challenges, from managing high demand in dense city centers to ensuring adequate coverage in less populated areas. Furthermore, the capacity of these algorithms to include objectives related to renewable energy integration and overall environmental impact points towards a holistic planning approach that supports sustainable energy transitions.

However, despite their considerable strengths, several limitations and challenges remain in the application of MOGAs for EVCS optimization.

• Computational Cost: For very large-scale problems with a vast number of candidate locations and intricate demand models, the computational burden of MOGAs can still be substantial. Evaluating the fitness of each individual in the population across multiple objectives and numerous generations can be time-consuming.

- Data Requirements and Accuracy: The effectiveness of these models is highly dependent on the accuracy and granularity of input data, including EV charging demand, traffic flow, land availability, and grid information. Inaccurate or insufficient data can lead to suboptimal or unrealistic solutions. The challenge of modeling highly variable and uncertain charging demand remains a significant hurdle [10].
- Complexity of Objective Functions: Accurately quantifying certain objectives, such as user satisfaction or the precise impact on grid stability, can be challenging. Simplifying assumptions in these models might reduce their real-world applicability.
- Interpretability: While MOGAs provide a set of solutions, the process by which these solutions are derived (the genetic evolution) can be less transparent than traditional analytical models. Interpreting the optimal capacity based on multi-parameter programming also adds complexity [2].

FUTURE DIRECTIONS

The field of EVCS optimization using MOGAs is dynamic and offers numerous avenues for future research and development:

- 1. Integration of Real-time Data and Dynamic Optimization: Developing models that can adapt to real-time changes in demand, electricity prices, and traffic conditions. This would involve incorporating predictive analytics and potentially online learning into the MOGA framework, or even coupling with shared charging pile models based on generalized Nash games [5].
- 2. Uncertainty and Robustness: Incorporating uncertainty (e.g., in future EV adoption rates, energy prices, or unexpected infrastructure failures) more explicitly into the optimization process. This could involve stochastic programming or robust optimization techniques integrated with MOGAs to find solutions that are resilient to various uncertainties.
- 3. Advanced User Behavior Modeling: Deeper integration of sophisticated behavioral models, including psychological factors like range anxiety and user preferences for charging speed, cost, and convenience. Game theory approaches considering user preferences and crowdedness can provide more realistic charging station placements [1].
- 4. Integration with Smart Grid Technologies: Optimizing EVCS placement and capacity in conjunction with smart grid functionalities, such as vehicle-to-grid (V2G) capabilities, demand-side management, and local renewable energy generation. This could involve exploring low-carbon planning for electro-road coupled networks [16].

- 5. Multi-Modal Transportation Integration: Considering the integration of EV charging infrastructure with broader transportation networks, including public transit and freight logistics, particularly for electric freight vehicles in rural areas [4]. This could involve decision support frameworks based on ontologies and multi-agent systems [11].
- 6. Hybrid Optimization Approaches: Combining MOGAs with other metaheuristics or exact optimization methods to leverage their respective strengths, potentially improving convergence speed and solution quality for very large problems. This could include combining with fuzzy TOPSIS MCDA for suitable site selection [9].
- 7. Longitudinal Planning: Developing models that optimize EVCS deployment over a long-term planning horizon, considering the phased expansion of infrastructure as EV penetration increases. This would require robust predictive models for future demand.

CONCLUSION

The transition to electric vehicles necessitates a meticulously planned charging infrastructure, and Multi-Objective Genetic Algorithms have emerged as a powerful methodology for optimizing the complex interplay of factors involved in siting and sizing these crucial facilities. By simultaneously balancing economic user satisfaction, and environmental considerations, MOGAs generate a rich set of Pareto optimal solutions that empower decision-makers to make informed and strategic choices. While challenges related to computational scale and data accuracy persist, the ongoing advancements in modeling dynamic demands, integrating smart grid technologies, and refining user behavior insights promise even more sophisticated and impactful solutions. As EV adoption continues its upward trajectory, the continuous innovation in multiobjective optimization approaches, particularly those leveraging the adaptability of genetic algorithms, will be instrumental in building the resilient, efficient, and usercentric charging network required for a sustainable future.

REFERENCES

- [1] Bae, S., Jang, I., Gros, S., Kulcsar, B., & Hellgren, J. (2022). A game approach for charging station placement based on user preferences and crowdedness. IEEE Transactions on Intelligent Transportation Systems, 23(4), 3654–3669. DOI: 10.1109/TITS.2020.3038938
- [2] Cai, H. Q., Dai, W., Zhao, J. Y., Wang, C., Zhang, Z. J., & Li, S. Y. (2022). Evaluation method of effective capacity of electric vehicle charging stations based on multi-parameter programming. Electric Power, 55(11), 175–183. DOI: 10.11930/j.issn.1004-9649.202206091

- [3] Cao, Q., & Zhu, Y. F. (2023). Location optimization of electric vehicle charging stations: Taking Pudong New Area of Shanghai as an example. Practical technology of automobile, 18–22
- [4] Cao, Y. L., Ni, X., & Gong, H. Y. (2024). Research on location of electric freight vehicle charging stations in rural areas based on AP clustering algorithm and interval intuitionistic fuzzy number. Journal of Tianjin University of Technology.1-10
- [5] Chen, J., Huang, X., Cao, Y., Li, L., Yan, K., Wu, L., & Liang, K. (2022). Electric vehicle charging schedule considering shared charging pile based on generalized Nash game. International Journal of Electrical Power & Energy Systems, 136, 107579. DOI: 10.1016/j.ijepes.2021.107579
- [6] Cheng, J. C. (2023). Research on location and capacity method of electric vehicle charging stations considering charging user behavior. Shanghai Institute of Electric Engineering master's degree thesis.82. DOI: 10.27818/d.cnki.gshdj.2023.000046
- [7] Cheng, J. X. (2023). Research on location and capacity planning of urban electric vehicle charging stations. Shanghai Institute of Electric Engineering master's degree thesis.66. DOI: 10.27818/d.cnki.gshdj.2023.000059
- [8] Chi, L., Yuan, Y., & Xu, T. T. (2021). Research on site selection and capacity determination of charging facilities based on thermal analysis diagram of EV and charging pile. ICITEE '20: Proceedings of the 3rd International Conference on Information Technologies and Electrical Engineering, 303–307. DOI: 10.1145/3452940.3452998
- [9] Chumbi, W. E., Martinez-Minga, R., Zambrano-Asanza, S., Leite, B., & Franco, J. F. (2024). Suitable site selection of public charging stations: A fuzzy TOPSIS MCDA framework on capacity substation assessment. Energies, 17(14), 3452. DOI: 10.3390/en17143452
- [10] Ding, Y. Q. (2024).Location optimization of electric vehicle charging stations based on charging demand. Master's thesis of Anhui Normal University.62. DOI: 10.26920/d.cnki.gansu.2024.000136
- [11] Du, J., Jing, H., Choo, K. K. R., Sugumaran, V., & Castro-Lacouture, D. (2020). An ontology and multiagent based decision support framework for prefabricated component supply chain. Information Systems Frontiers, 22(6), 1467–1485. DOI: 10.1007/s10796-019-09941-x
- [12] Fang, Z., Zhang, J., Sun, Y., & Chen, S. Y. (2020). Study on quantity planning of charging piles considering multi-objective constraints. Power System Technology,

- 44(2), 704–710. DOI: 10.13335/j.1000-3673.pst.2019.0359
- [13] Filippi, C., Guastaroba, G., Peirano, L., & Speranza, M. (2023). Iccorporating time-dependent demand patterns in the optimal location of capacitated charging stations. Transportation Research Part C, Emerging Technologies, 152, 104145. DOI: 10.1016/j.trc.2023.104145
- [14] Gui, Q., Shi, Y., & Zhou, Y. (2021). Optimal configuration model of photovoltaic and energy storage capacity of charging station considering battery dynamic characteristics. Electric Power Construction, 42(5), 90–99. DOI: 10.12204/j.issn.1000-7229.2021.05.010
- [15] Hu, Y. S., Qin, C. Y., Lü, S. H., & Wu, H. J. (2024). Research on location of electric vehicle charging stations considering user satisfaction and range anxiety. Wuhan Ligong Daxue Xuebao.
- [16] Jia, R., Gao, Y. D., & Zhao, J. (2024). Low-carbon planning for electric vehicle charging station location and capacity in electro-road coupled network. Journal of Shanghai Electric Power University, 40(2), 109–114.
- [17] Li, J., Liu, C., Yi, K., Fan, L., & Wu, Z. (2025). An adaptive NSGA-II for electric vehicle routing problem with charging/discharging based on time-of-use electricity pricing and diverse charging stations. Applied Soft Computing, 170, 112704. DOI: 10.1016/j.asoc.2025.112704
- [18] Meng, T., Guo, H. G., & Zhang, C. M. (2024). Research on intelligent location and capacity determination method of electric vehicle charging stations. Journal of Taiyuan University of Science and Technology, 45(4), 342–347.
- [19] Mu, L. F., Sugumaran, V., & Wang, F. Y. (2020). A hybrid genetic algorithm for software architecture remodularization. Information Systems Frontiers, 22(5), 1133–1161. DOI: 10.1007/s10796-019-09906-0
- [20] Nandhini, I., Manjula, D., & Sugumaran, V. (2022). Multi-class brain disease classification using modified pre-trained convolutional neural networks model with substantial data augmentation. Journal of Medical Imaging and Health Informatics, 12(2), 168–183. Advance online publication. DOI: 10.1166/jmihi.2022.3936
- [21] Suganeshwari, G., Syed Ibrahim, S. I. P. M., & Sugumaran, V. (2023). A graph-based collaborative filtering algorithm combining implicit user preference and explicit time-related feedback. Neural Computing & Applications, 35(36), 25235–25247. DOI: 10.1007/s00521-023-08694-8

- 10.13335/j.1000- [22] Sun, Z. Y., Ning, A. B., & Fu, T. Y. (2024). Reduced-order backtracking algorithm for charging station location based on existing gas station distribution. O, L., & Speranza, Operations Research and Management Science.
 - [23] Verma, R., Sharma, S. K., Singh, P., Bhutto, J. K., & Alharbi, A. R. A. (2022). Analysis and sizing of charging stations in Kota city. Sustainability (Basel), 14(18), 11759. DOI: 10.3390/su141811759
 - [24] Wang, Y.-M., He, S.-F., García Zamora, D., Pan, X.-H., & Martínez, L. (2023). A large scale group three-way decision-based consensus model for site selection of new energy vehicle charging stations. Expert Systems with Applications, 214, 119107. DOI: 10.1016/j.eswa.2022.119107
 - [25] Xiao, B., & Gao, F. (2022). Location and capacity optimization method for electric vehicle charging stations with different capacity charging piles. Dianli Zidonghua Shebei, 42(10), 157–166.
 - [26] Xu, X. (2022). Analysis of charging pile location in Hanjiang District based on GIS. Geographical Research, 11(6), 568–576. DOI: 10.12677/GSER.2022.116058
 - [27] Zhang, K., & Cheng, L. (2024). Research on optimal site selection for electric vehicle charging stations. PEAI '24: Proceedings of the 2024 International Conference on Power Electronics and Artificial Intelligence, 781–785. DOI:DOI: 10.1145/3674225.3674366
 - [28] Zhang, Y., Wang, Y., Li, F., Wu, B., Chiang, Y. Y., & Zhang, X. (2021). Efficient deployment of electric vehicle charging infrastructure: Simultaneous optimization of charging station placement and charging pile assignment. IEEE Transactions on Intelligent Transportation Systems, 22(10), 6654–6659. DOI: 10.1109/TITS.2020.2990694