
INTERNATIONAL JOURNAL OF MODERN COMPUTER SCIENCE

AND IT INNOVATIONS (IJMCSIT)

https://aimjournals.com/index.php/ijmcsit

 pg. 1

eISSN: 3087-4297

Volume. 02, Issue. 11, pp. 01-11, November 2025"

Bridging The Gap: A Strategic Framework for Integrating Site Reliability

Engineering with Legacy Retail Infrastructure

Dr. Felicia S. Lee

School of Computing, National University of Singapore, Singapore

Ivan A. Kuznetsov

Faculty of Computer Science, Higher School of Economics, Moscow, Russia

Article received: 05/09/2025, Article Revised: 06/10/2025, Article Published: 12/11/2025

© 2025 Authors retain the copyright of their manuscripts, and all Open Access articles are disseminated under the

terms of the Creative Commons Attribution License 4.0 (CC-BY), which licenses unrestricted use, distribution, and

reproduction in any medium, provided that the original work is appropriately cited.

ABSTRACT

Background: The retail sector faces intense pressure to ensure high availability and low latency, especially during

peak traffic events. However, many established retailers operate on complex, monolithic legacy infrastructures that

are inherently resistant to modern DevOps practices. Site Reliability Engineering (SRE), pioneered in cloud-native

environments, offers a compelling model for managing reliability, yet its application in 'brownfield' legacy contexts

is poorly understood.

Objectives: This study aims to (1) analyze the socio-technical friction points when implementing SRE principles

within legacy retail organizations and (2) propose and evaluate a phased framework for this transition.

Methods: We employed a qualitative, multi-case study methodology, analyzing three anonymized retail organizations

(grocery, e-commerce, department store) undergoing SRE adoption. Data was collected through 30 semi-structured

interviews with engineering and leadership staff, supplemented by an analysis of internal documentation

(postmortems, roadmaps, and monitoring data). We analyzed these cases through the lens of a proposed three-phase

implementation framework: (1) Stabilize & Observe, (2) Automate & Abstract, and (3) Modernize & Scale.

Results: The findings indicate that the most significant barriers are cultural rather than technical, particularly the

resistance to blameless postmortems and the adoption of error budgets. Defining meaningful Service Level

Objectives (SLOs) for monolithic applications emerged as a complex initial hurdle. However, the study found that

SRE-derived data (SLO breach reports, toil logs) provided a critical, objective language for prioritizing technical

debt and de-risking modernization efforts, such as API abstraction and the introduction of new microservices.

Conclusion: SRE is a viable and necessary strategy for legacy retail, acting as a catalyst for incremental

modernization. Successful adoption hinges on adapting SRE principles, prioritizing cultural change alongside

technical automation, and using SRE metrics to bridge the divide between operations and development.

KEYWORDS

Site Reliability Engineering (SRE), Legacy Systems, Retail Technology, IT Modernization, DevOps, Service Level

Objectives (SLOs), Toil Automation.

INTRODUCTION

1.1. The Reliability Imperative in Modern Retail

The contemporary retail landscape is defined by a

relentless drive for digital transformation. The rise of e-

commerce, mobile shopping applications, and

omnichannel strategies has fundamentally altered

customer expectations. Modern consumers expect

seamless, instantaneous, and highly personalized

experiences, regardless of whether they are interacting

with a brand online, via a mobile app, or in a physical

store. This expectation of flawless service translates into

a stringent technical requirement: near-constant

availability.

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER SCIENCE

AND IT INNOVATIONS (IJMCSIT)

https://aimjournals.com/index.php/ijmcsit

 pg. 2

In this high-stakes environment, reliability is not merely

an IT metric; it is a core business proposition. A minute

of downtime during a promotional event or, most

critically, a peak traffic period like Black Friday or a

holiday sale, can result in millions in lost revenue,

irreversible brand damage, and customer attrition. The

latency of an inventory lookup, the success rate of a

payment transaction, or the speed of a product page load

are all direct drivers of conversion rates and customer

loyalty. Consequently, the engineering challenge for

retailers is no longer just to build features, but to operate

services that are perpetually fast, available, and resilient.

1.2. The 'Legacy' Conundrum: When Infrastructure

Resists Change

While consumer-facing applications present a veneer of

modernity, the operational backbone of many established

retailers is built upon legacy infrastructure. These

'brownfield' environments are often a complex tapestry of

technologies accrued over decades. They are

characterized by monolithic architectures, where core

business functions—such as inventory management,

order processing, and point-of-sale (POS) data

synchronization—are tightly coupled within a single,

massive codebase.

This architectural approach, common in systems

developed in the 1980s and 1990s, presents profound

challenges. These systems often run on bare-metal

servers or early-generation virtual machines, managed

with manual processes and infrequent, high-risk "big

bang" release cycles. Observability is typically poor,

limited to basic server health metrics (e.g., CPU,

memory) rather than the user-centric performance

indicators required by modern services. Data is often

siloed in proprietary mainframe or AS/400 databases,

accessible only through arcane protocols. This technical

debt makes the infrastructure brittle, difficult to scale,

and terrifyingly risky to modify. The very systems

responsible for the most critical business functions are

the least adaptable to the demands of the modern

reliability imperative.

1.3. The Emergence of Site Reliability Engineering

(SRE)

In response to the challenge of managing massive,

distributed systems at scale, Google pioneered the

discipline of Site Reliability Engineering (SRE). SRE is

a prescriptive approach that treats operations as a

software engineering problem. As described by its

progenitors, SRE is "what happens when you ask a

software engineer to design an operations team." It

diverges sharply from traditional IT operations models

(like ITIL), which tend to silo development and

operations teams and manage change through rigid,

ticket-based processes.

The SRE model is built on several core tenets. First is the

primacy of Service Level Objectives (SLOs), which are

specific, measurable, and user-centric targets for service

performance (e.g., "99.9% of checkout requests will be

successful"). These SLOs are not aspirations; they are

hard data points used to guide engineering decisions.

Second is the error budget, the mathematical inverse of

the SLO ($1 - SLO$). This budget represents the

acceptable level of failure for a service. If a service

exceeds its error budget, all new feature development is

frozen, and all engineering resources are redirected to

improving reliability. This mechanism creates a self-

regulating, data-driven balance between innovation and

stability.

Other key SRE practices include the aggressive

automation of toil (manual, repetitive, automatable

operational work) and the adoption of a blameless

postmortem culture. This culture shifts the focus of

incident investigation away from "human error" and

toward understanding the systemic and programmatic

failures that allowed an incident to occur, fostering a

climate of continuous learning and improvement

1.4. Literature Gap and Research Problem

The principles of SRE, along with the broader DevOps

movement, have been transformative for organizations

born in the cloud. An abundance of literature describes

how to implement SRE in 'greenfield' projects

characterized by microservice architectures,

containerized workloads managed by platforms like

Kubernetes, and robust public cloud infrastructure. These

environments are, by their nature, designed for the kind

of abstraction, automation, and rapid iteration that SRE

thrives upon.

However, a significant gap exists in the academic and

professional literature regarding the application of SRE

to the 'brownfield' world of legacy systems. Recent

industry analyses highlight that legacy modernization

remains a top priority for CIOs, yet the operational risks

involved are a primary barrier to progress. The central

problem is a fundamental mismatch: How can

organizations apply principles forged in the world of

ephemeral, scalable, cloud-native services to the rigid,

monolithic, on-premise infrastructure that still powers the

global retail economy?

Applying "by the book" SRE in such an environment is

often untenable. How does one define a granular SLO for

a function buried deep within a 20-year-old COBOL

mainframe application? How is an error budget enforced

when the release cycle is six months long? How can

automation be implemented when the systems lack

modern APIs? There is a critical need for a structured,

adaptive framework that bridges the gap between SRE

theory and legacy reality.

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER SCIENCE

AND IT INNOVATIONS (IJMCSIT)

https://aimjournals.com/index.php/ijmcsit

 pg. 3

1.5. Research Objectives and Article Structure

This study seeks to address this gap by investigating the

implementation of SRE within legacy-heavy retail

organizations. The research is guided by three primary

objectives:

1. To identify and analyze the specific socio-

technical friction points that arise when SRE principles

(SLOs, error budgets, blameless postmortems, toil

automation) are introduced into traditional, operations-

focused IT environments in the retail sector.

2. To propose a phased methodological framework

designed specifically for the incremental adoption of

SRE in organizations managing legacy infrastructure.

3. To evaluate the application of this framework

through a qualitative, multi-case analysis of SRE

adoption efforts, identifying common challenges and

success factors.

To achieve these objectives, this article follows the

IMRaD structure. The Methodology section details our

qualitative, multi-case study design, the criteria for case

selection, and the data collection and analysis procedures.

It also provides a comprehensive, detailed breakdown of

the proposed three-phase implementation framework that

serves as the analytical lens for the study. The Results

section presents the empirical findings from our three

case studies, structured according to this phased

framework. The Discussion section synthesizes these

findings, interprets their implications for theory and

practice, and validates the proposed framework. Finally,

the Conclusion summarizes the study's contributions,

acknowledges its limitations, and suggests avenues for

future research.

2. METHODOLOGY

2.1. Research Design: A Qualitative, Multi-Case

Approach

To investigate the complex, nuanced, and context-

dependent phenomena of organizational and technical

change, this study employed a qualitative, multi-case

study research design. SRE adoption is not merely a

technical tooling problem; it is a profound socio-

technical transformation that involves shifts in culture,

team structure, political power, and engineering

philosophy. A quantitative approach, while useful for

measuring specific outcomes (like SLO adherence),

would fail to capture the process of adoption and the

nature of the barriers encountered.

A comparative case study approach allows for deep,

contextualized exploration of real-world

implementations. By comparing the experiences of

different organizations, we can identify emergent

patterns, common challenges, and divergent strategies,

leading to a richer, more transferable (though not

generalizable) set of findings. This approach is ideally

suited for answering "how" and "why" questions, such as

how organizations adapt SRE principles and why certain

adaptations succeed or fail in a legacy context.

2.2. Case Selection Criteria

We purposefully selected three large, anonymized retail

organizations for this study, hereafter referred to as "Case

A," "Case B," and "Case C." Selection was based on a

specific set of criteria designed to ensure relevance to the

research questions:

1. Sector: The organization must derive the

majority of its revenue from retail operations (e.g.,

grocery, fashion, department store).

2. Legacy Infrastructure: The organization's core

business functions (e.g., inventory, POS, or core e-

commerce) must rely on systems identified by its own IT

leadership as "legacy" (e.g., monolithic architecture,

mainframe, pre-cloud COTS platforms).

3. SRE Adoption Status: The organization must

have formally initiated an SRE adoption program within

the last 24-36 months, moving beyond theoretical

discussion into active implementation.

4. Access: The organization must grant access for

researchers to conduct semi-structured interviews and

review non-sensitive internal documentation.

The three selected cases provided a diverse cross-section

of the retail legacy challenge:

● Case A (GroceryCo): A large, national grocery

chain. Its primary legacy challenge is a mainframe-based

inventory and supply chain system. This system is highly

reliable but opaque, and all new development (e.g.,

online ordering) is severely bottlenecked by the

mainframe's limited, batch-oriented integration points.

● Case B (FashionRetail): A "clicks-and-mortar"

fashion retailer. Its legacy challenge is a monolithic, first-

generation e-commerce platform (circa 2005) that has

been heavily customized. It suffers from severe

performance and scaling issues during promotional

events.

● Case C (StoreCo): A national department store

chain. Its legacy challenge is a highly disparate and aging

set of in-store Point-of-Sale (POS) systems across

hundreds of stores. These systems frequently suffer from

data synchronization failures with the central order

management system.

2.3. Data Collection

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER SCIENCE

AND IT INNOVATIONS (IJMCSIT)

https://aimjournals.com/index.php/ijmcsit

 pg. 4

Data collection occurred over a 12-month period and

employed a triangulated approach to ensure richness and

validity.

● Semi-Structured Interviews (N=30): We

conducted 30 interviews, with 10 participants from each

case organization. Participants were selected to provide a

holistic view, including:

○ Traditional Operations/Infrastructure Staff

(n=12)

○ Software Developers (n=9)

○ Newly hired or designated SREs (n=5)

○ IT Leadership (CIO, VP of Infrastructure) (n=4)

Interviews lasted 60-90 minutes and were guided by a

protocol focused on the SRE adoption process, perceived

challenges, cultural shifts, and the specific application of

SRE principles (SLOs, postmortems, etc.).

● Document Analysis: We were granted access to

a repository of internal documents, which provided

concrete artifacts of the SRE transformation. These

included:

○ Blameless postmortem reports (n=15,

anonymized)

○ SRE team charters and mission statements.

○ Internal wiki pages and Confluence articles

defining SLOs and error budget policies.

○ Excerpts from monitoring dashboards

(screenshots) and internal project roadmaps.

● Participant Observation (Limited): Where

permitted, researchers attended (as non-participant

observers) SRE team planning meetings and incident

review (postmortem) meetings (n=6). This provided

direct insight into the team dynamics and cultural

practices being enacted.

2.4. A Proposed Phased Implementation Framework

(The Analytical Model)

To guide the data analysis and structure the investigation,

we first synthesized a methodological framework from

preliminary literature and exploratory interviews. This

"Phased Implementation Framework" posits that SRE

cannot be adopted in a "big bang" in legacy

environments. Instead, it requires a gradual, incremental

approach. This framework, detailed below, serves as the

core "method" proposed by this study, which the Results

section will then use as an analytical lens to evaluate the

three case studies.

The framework consists of three sequential, overlapping

phases:

2.4.1. Phase 1: 'Stabilize & Observe' – Establishing

Foundational Reliability

This initial phase is the most critical and focuses on

shifting the organization from a reactive, "firefighting"

posture to a proactive, data-driven one. It does not

involve significant automation or modernization but lays

the cultural and observational groundwork for all

subsequent efforts.

● 2.4.1.1. Defining Critical User Journeys (CUJs)

in a Monolithic Context: Before metrics can be

established, the team must define what to measure. In a

monolithic system, this is exceptionally difficult. A CUJ

is a user-centric path through the system that delivers

value (e.g., "User searches for product," "User adds item

to cart," "User completes checkout"). In a legacy context,

this requires identifying these journeys as they traverse

the monolith. For example, a POS "checkout" journey

might involve the local terminal, a store-level server, and

a central database, all within one application stack. The

SRE team must first map these critical flows, often

through reverse-engineering or tribal knowledge.

● 2.4.1.2. Selecting Service Level Indicators

(SLIs): An SLI is the raw metric used to measure a CUJ

(e.g., latency, error rate). This framework argues against

using traditional legacy metrics like server CPU or

memory utilization as SLIs, as these are symptoms, not

user-facing indicators. The focus must be on symptom-

based monitoring. The most effective SLIs for legacy

systems are typically "black-box" metrics measured at

the perimeter:

○ Availability: The percentage of valid requests

that receive a non-error response, measured at the load

balancer or application entry point.

○ Latency: The time taken to service a request, also

measured at the perimeter.

○ Success Rate: A more nuanced availability

metric, such as the percentage of "checkout" API calls

that return "success" rather than "payment failed" or

"inventory error."

● 2.4.1.3. Negotiating Initial Service Level

Objectives (SLOs): An SLO is the target for an SLI (e.g.,

"99.9% of checkout requests will be successful over a 28-

day window"). This framework posits that setting

aspirational SLOs (e.g., "five nines" or 99.999%) in a

legacy environment is counter-productive. It creates

immediate failure, demoralizes the team, and exhausts

the error budget instantly, rendering the concept useless.

Instead, the initial SLOs should be data-driven and

achievable. Teams should first measure their baseline

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER SCIENCE

AND IT INNOVATIONS (IJMCSIT)

https://aimjournals.com/index.php/ijmcsit

 pg. 5

performance for 30-60 days (e.g., "We are currently

99.5% successful") and set the initial SLO just above that

baseline (e.g., 99.7%). The SLO can then be

progressively tightened as reliability improves. This

negotiation is a political act, aligning Development,

Operations, and the Business on an acceptable level of

reliability.

● 2.4.1.4. Instituting the Blameless Postmortem

Culture: This is the most significant cultural component

of Phase 1. Traditional ITIL-based organizations practice

"Root Cause Analysis" (RCA), which often concludes

with "human error" and seeks an individual to blame.

SRE replaces this with a blameless postmortem culture.

This framework defines a structured process for this:

1. An incident is declared and resolved.

2. Within 72 hours, a postmortem meeting is held,

moderated by a neutral party.

3. The meeting is forbidden from using language of

blame ("Who...?", "Why did you...").

4. The focus is on a factual timeline: What

happened? What was the impact? How was it detected?

How was it remediated?

5. The analysis focuses on systemic causes: Why

was the system brittle? Why did monitoring fail to detect

it? Why was the remediation process slow?

6. The output is a document with "Corrective

Actions"—specific, assigned, and time-boxed

engineering tasks to prevent the class of problem from

recurring. This document is public to the entire

engineering organization.

2.4.2. Phase 2: 'Automate & Abstract' – Reclaiming

Engineering Time

With foundational observability and a learning culture in

place, Phase 2 focuses on using that data to actively

reduce operational load and de-risk the legacy system.

● 2.4.2.1. The 'Toil Budget' and Identification: Toil

is defined as operational work that is manual, repetitive,

automatable, tactical (not strategic), and scales linearly

with service growth. It is the "firefighting" and "grunt

work" that consumes traditional Ops teams. In this phase,

SREs are mandated to track their time, specifically

logging hours spent on toil. This data is used to establish

a "toil budget" (e.g., an SRE should spend no more than

50% of their time on toil). Any toil exceeding this budget

must be automated. This creates a data-driven incentive

to build software that automates operations. Examples in

retail include: manually restarting failed batch inventory

jobs, clearing caches, or provisioning user accounts.

● 2.4.2.2. The Error Budget Policy: As defined in

Phase 1, the SLO creates an error budget. In Phase 2, this

budget is enforced as a policy. This is the SRE's primary

mechanism for balancing reliability and new features.

The policy, agreed upon by leadership, states: If a service

has consumed its 28-day error budget (due to outages or

performance degradation), all new feature releases for

that service are frozen. All development resources for

that service are redirected to work on the "Corrective

Actions" backlog from the postmortems until the service

is stable and operating within its SLO. This is a radical

political tool in legacy environments, as it uses objective

data to halt the business's demand for "more features" in

favor of the stability the business also demands.

● 2.4.2.3. The 'Strangler' API Abstraction Layer:

This is the primary technical strategy of Phase 2.

Modifying the core of a legacy monolith is unacceptably

risky. The "Strangler Fig" pattern (or API Abstraction)

involves "wrapping" the legacy system in a modern, well-

documented, reliable API layer. For example, instead of

allowing a new mobile app to query the mainframe

inventory database directly, it queries a modern REST

API. This API, in turn, handles the complex and brittle

interaction with the mainframe. This strategy achieves

two goals: (1) It abstracts the legacy system, making it

easier and safer for new applications to consume its data.

(2) It creates a "seam" where, in the future, the legacy

system can be replaced piece by piece behind the API

without the front-end services ever knowing.

2.4.3. Phase 3: 'Modernize & Scale' – Data-Driven

Evolution

In this phase, the SRE team transitions from stabilizing

the past to actively building the future, using the data

from Phases 1 and 2 to guide the modernization strategy.

● 2.4.3.1. Using SRE Data to Prioritize

Modernization: Legacy modernization is expensive and

complex. The most common question is: "Where do we

start?" The SRE data provides the answer. The backlog

of postmortem corrective actions, combined with SLO

breach reports and toil logs, creates a data-driven,

prioritized roadmap for modernization. If 60% of SLO

breaches are related to the monolithic payment

processing module, that module becomes the top priority

for being "strangled" (per 2.4.2.3) and rewritten as a

modern microservice. This moves the modernization

debate from one based on opinion and "gut feel" to one

based on objective data about user pain.

● 2.4.3.2. Introducing Cloud-Native Tooling for

New Services: This framework explicitly argues against

attempting to containerize the legacy monolith. It is not a

"lift and shift" model. Instead, SREs manage a hybrid

environment. The legacy stack is left in place, managed

by the new API abstractions and automation scripts. All

new services (e.g., the new payment microservice) are

built on a modern, containerized platform (like

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER SCIENCE

AND IT INNOVATIONS (IJMCSIT)

https://aimjournals.com/index.php/ijmcsit

 pg. 6

Kubernetes or a cloud provider's equivalent). The SRE

team's role expands to manage the reliability of this new

platform and, critically, the seams and dependencies

between the new microservices and the legacy API-

wrapped monoliths.

● 2.4.3.3. Integrating AIOps for Legacy

Observability: Many legacy systems produce

unstructured or non-standard logs (e.g., mainframe job

logs, COBOL error codes) that modern observability

tools cannot easily parse. Phase 3 introduces the use of

AIOps (AI for IT Operations) as an advanced solution.

Machine learning models can be trained on these

unstructured logs to identify anomalous patterns before

they trigger a user-facing SLO breach. This provides

predictive failure analysis for the systems that are the

least observable, completing the observability journey

that began in Phase 1.

2.5. Data Analysis

We employed a thematic analysis approach to analyze the

interview transcripts, observation notes, and internal

documents. The initial coding structure was based on the

three phases of our proposed framework (Stabilize &

Observe, Automate & Abstract, Modernize & Scale) and

the core SRE tenets (SLOs, Error Budgets, Postmortems,

Toil).

Two researchers independently coded a subset of the data

to establish an initial codebook and ensure inter-coder

reliability. The full dataset was then coded, with

emergent themes (e.g., "Cultural Resistance,"

"Management Buy-in," "Tooling Mismatch") being

added to the codebook. A cross-case synthesis was then

performed, comparing how each of the three

organizations (GroceryCo, FashionRetail, StoreCo)

navigated the challenges within each phase of the

framework. This comparative analysis allowed us to

refine the framework and identify the most critical

success factors and failure modes.

3. RESULTS

The analysis of the three case studies revealed a

consistent, albeit challenging, journey of SRE adoption

that broadly aligned with the proposed three-phase

framework. However, the progression was not linear, and

each organization encountered significant friction,

particularly in the cultural and political realms.

3.1. Overview of SRE Adoption Trajectories

● Case A (GroceryCo): Began SRE adoption

driven by a new CIO. The primary goal was to de-risk the

mainframe-based supply chain to support a new online

ordering initiative. They focused heavily on Phase 1

(SLOs, Postmortems) and Phase 3 (AIOps for mainframe

logs) but struggled with Phase 2 (Automation), as the

pool of engineers with both mainframe and modern

automation skills was small.

● Case B (FashionRetail): Adoption was a

grassroots effort from the engineering team, frustrated by

constant "firefighting" during sales. They excelled at

Phase 2 (Toil Automation, Error Budgets), using the error

budget as a "weapon" to force leadership to pause

features and address technical debt. They struggled with

Phase 1, finding it hard to get business buy-in for

blameless postmortems.

● Case C (StoreCo): Adoption was top-down, part

of a major digital transformation. Their primary success

was in Phase 2 (API Abstraction), successfully

"wrapping" their disparate POS systems in a unified API.

This immediately stabilized data synchronization. They

faced their greatest challenge in Phase 1 (SLOs), as the

performance of the in-store systems was highly variable

and difficult to measure centrally.

3.2. Phase 1 Analysis: 'Stabilize & Observe'

This phase was universally identified as the most difficult

and most important.

3.2.1. The Challenge of Defining SLOs for Monoliths

All three cases struggled to move from server-based

metrics to user-centric SLOs.

● Difficulty in Measurement: In Case C (StoreCo),

the team initially tried to set an SLO for "POS

Transaction Time." They discovered that the transaction

time was recorded in a local log on 1,200 different store

servers, in different formats, and only uploaded nightly.

It was impossible to measure in real-time. They were

forced to redefine their SLI to "API success rate" for the

central order management system receiving the data,

which was a "good enough" proxy for reliability, though

not a true measure of the user's (cashier's) experience.

● Negotiating Baselines: In Case B

(FashionRetail), the e-commerce platform was

notoriously slow. The engineering team measured the

90th percentile (p90) latency for "Add to Cart" at 3.5

seconds. The business wanted an SLO of 800ms. The

SRE team, following the framework, argued that this was

aspirational and would fail immediately. As one SRE

lead stated, "We had to show them the data and say, 'The

system is this slow. We can't promise 800ms tomorrow.

Let's set the SLO at 3.0 seconds, and when we are

consistently meeting that, we can tighten it to 2.5

seconds.' It was the first honest conversation about

performance we'd ever had."

● Proxy Metrics for Mainframes: In Case A

(GroceryCo), measuring the "latency" of a batch

inventory update was nonsensical. The team shifted to a

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER SCIENCE

AND IT INNOVATIONS (IJMCSIT)

https://aimjournals.com/index.php/ijmcsit

 pg. 7

different CUJ: "Inventory Data Freshness." They defined

an SLI as the time elapsed between a sale occurring in-

store and that inventory change being reflected in the e-

commerce system. Their initial SLO was "99% of

inventory updates will be reflected online within 15

minutes." This was a meaningful, user-centric SLO for a

legacy batch-oriented system.

3.2.2. Cultural Barriers to Blameless Postmortems

This was, by far, the most significant socio-technical

hurdle.

● Resistance from ITIL Culture: Case A

(GroceryCo) had a deeply embedded ITIL culture. The

existing "Problem Management" team saw SRE's

blameless postmortems as a "lack of accountability." An

Operations Manager noted, "For 20 years, my job has

been to find out who made the change that broke the

system. You are asking me to ignore that and talk about

'systemic weakness.' It feels like we are letting people off

the hook." It took direct, sustained executive sponsorship

from the CIO to enforce the blameless model and protect

the engineers who were participating honestly.

● Fear of Admitting Failure: In all cases, engineers

were initially silent in postmortem meetings, fearing

retribution. The "blameless" declaration was met with

cynicism. In Case B (FashionRetail), the SRE lead had to

"sacrifice" themselves first. They moderated a

postmortem about an incident they had caused, publicly

analyzing the systemic issues (e.g., "The script I ran was

dangerous, and the system should have prevented it from

running in production. The monitoring should have

caught the impact faster.") This act of vulnerability was

cited as a turning point in building psychological safety.

● Shifting from 'Fix' to 'Prevent': The output of

traditional RCAs was almost always "re-train staff" or

"add checklist item." The output of the new SRE

postmortems was engineering work. In Case C (StoreCo),

a data sync failure postmortem produced a corrective

action: "Build a reconciliation tool that idempotently

retries failed POS uploads." This was a fundamental shift

from blaming an operator for a manual data-entry error to

building a system that was resilient to that class of error.

3.3. Phase 2 Analysis: 'Automate & Abstract'

Once baseline stability and a learning culture began to

form, teams found significant value in Phase 2.

3.3.1. Successes in Toil Reduction

Identifying and automating toil was a major "quick win"

that built momentum for SRE.

● Quantifying the Pain: In Case B (FashionRetail),

the SRE team was required to log toil. They discovered

that two engineers were spending a combined 30 hours

per week manually clearing a specific product cache on

the monolithic e-commerce platform. As one developer

said, "We all knew it was a pain, but when leadership saw

'30 hours' on a spreadsheet, they finally approved the two

weeks of engineering time to build an automated cache

invalidation service."

● Empowering Operations: In Case A

(GroceryCo), the mainframe operations team had a 50-

page "runbook" for manually restarting failed nightly

batch jobs. The new SRE team (a mix of ops and

developers) spent three months writing Python scripts to

automate 80% of that runbook. This freed the mainframe

operators to learn new skills and contribute to

observability projects, rather than just "babysitting the

batch."

3.3.2. The Error Budget as a Political Tool

This was the most controversial, yet most powerful, SRE

concept.

● Forcing the Reliability Conversation: In Case B

(FashionRetail), the e-commerce platform chronically

breached its newly established latency SLO (p90 > 3.0s),

exhausting its error budget two weeks into every month.

The marketing team wanted to launch a new

personalization engine. Following the new policy, the

SRE team announced a "feature freeze." The VP of

Marketing escalated to the CTO, who pointed to the data:

"We cannot add new features to a system that is already

failing our users." The personalization project was

paused for one quarter, and engineering resources were

redirected to optimize the database query cache and

image rendering pipeline. The p90 latency dropped to 2.2

seconds. This event, cited by all participants in Case B,

cemented the SRE team's authority and the value of the

error budget.

● Failure to Enforce: In Case C (StoreCo),

leadership was unwilling to enforce the error budget

policy. The POS API service was consistently breaching

its SLOs, but the business "accepted the risk" and

continued to push for new in-store features. The SRE

team's alerts became "noise," and morale plummeted. An

SRE there noted, "An error budget without teeth is just

another dashboard. It has no power. We measure the

failures, but we aren't allowed to stop them from

happening."

3.3.3. API Abstraction as a Decoupling Strategy

The "Strangler Fig" pattern was a universally successful

technical strategy.

● De-Risking the POS: Case C (StoreCo) provides

the clearest example. The project to replace all 1,200 POS

terminals was a non-starter (estimated $50M+ cost).

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER SCIENCE

AND IT INNOVATIONS (IJMCSIT)

https://aimjournals.com/index.php/ijmcsit

 pg. 8

Instead, the SRE team led the development of a modern,

central "POS Abstraction API." This API accepted data

from all the different, aging POS models and formats,

transformed it, and fed it reliably to the central systems.

This $1M project solved the data synchronization failures

within six months. It also meant that new services, like a

mobile "scan-and-go" app, could be built to talk to this

single, modern API, completely ignorant of the legacy

mess behind it.

● Unlocking Mainframe Data: In Case A

(GroceryCo), the new online ordering system needed

real-time inventory. The mainframe team (now part of the

SRE org) built a "change-data-capture" service that

streamed inventory changes from the mainframe

database to a Kafka queue, which then populated a

modern API. This "Inventory API" provided sub-second

inventory data to the e-commerce site, effectively turning

a 50-year-old batch system into a (near) real-time service

without touching the core COBOL code.

3.4. Phase 3 Analysis: 'Modernize & Scale'

This phase was the least mature in all cases, but the

trajectory was clear.

3.4.1. Prioritizing Modernization via SRE Data

SRE data became the new language of prioritization.

● From "Gut Feel" to Data-Driven: Before SRE,

the modernization roadmap in Case B (FashionRetail)

was, as one director put it, "a shouting match between the

marketing team and the highest-paid engineer." After

SRE, the postmortem corrective action backlog and the

SLO breach reports provided an objective list. The team

analyzed six months of data and found that 55% of all

error budget consumption was linked to the monolithic

"Checkout" service. This service was immediately

targeted as the first piece of the monolith to be

"strangled" and rewritten as a separate microservice.

● Justifying the Cost: In Case A (GroceryCo), the

SRE team used toil data to justify modernization. They

calculated the engineering hours spent manually

managing the batch jobs (per 3.3.1) and presented the

annual, fully-loaded cost to the CIO. This cost was so

high that it easily justified the budget for a modern

workload automation scheduler, demonstrating a clear

ROI for modernization.

3.4.2. The Hybrid Infrastructure Challenge

All organizations were now managing a hybrid

environment, which created new SRE challenges.

● Managing the Seams: As Case B (FashionRetail)

began building its new "Checkout" microservice on

Kubernetes, the SRE team's focus shifted. They were

now responsible for both the legacy monolith (on VMs)

and the new Kubernetes platform. The most complex

incidents were those that occurred at the "seam" between

the two—for example, when the new microservice called

an old API on the monolith, causing a database

connection pool to exhaust. The SRE team had to have

"full-stack" knowledge of both worlds, a skillset that was

extremely difficult to hire or train.

● Tooling Gaps: The teams' new, modern

observability tools worked perfectly for the Kubernetes

side but struggled to ingest and correlate data from the

legacy side. This created a "split-brain" monitoring

scenario, making it hard to trace a single user request

(CUJ) as it hopped from a new microservice to a legacy

API and back.

3.4.3. Early Adoption of AIOps

Case A (GroceryCo) was the only organization actively

experimenting with AIOps, with promising results.

● Predictive Failure for Mainframes: The

mainframe system produced tens of thousands of cryptic

log messages nightly. It was impossible for a human to

review. The SRE team partnered with a vendor to train an

AIOps model on these logs. After three months, the

model began to successfully identify anomalous log

patterns 1-2 hours before the associated batch job would

fail. This allowed the SRE team to proactively intervene

and prevent a failure that would have previously breached

the "Inventory Data Freshness" SLO. An operations

engineer remarked, "It's the first time in my career we've

ever fixed a mainframe problem before it happened."

4. DISCUSSION

The findings from these three case studies provide

significant insights into the adaptation of Site Reliability

Engineering within legacy retail environments. This

discussion synthesizes these findings to address the

research objectives, validate the proposed framework,

and explore the broader implications for both theory and

practice.

4.1. SRE in Legacy Contexts: An Interpretive Synthesis

Our first research objective was to identify the socio-

technical friction points. The results overwhelmingly

indicate that SRE adoption in legacy organizations is

primarily a cultural and political challenge, not a

technical one. The technical hurdles, while significant

(e.g., measuring monoliths, automating mainframes),

were solvable with dedicated engineering effort. The

socio-technical barriers, however, proved far more

resilient.

The resistance to blameless postmortems, as seen in Case

A, highlights the deep-seated nature of a "blame culture"

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER SCIENCE

AND IT INNOVATIONS (IJMCSIT)

https://aimjournals.com/index.php/ijmcsit

 pg. 9

within traditional ITIL-based operations. SRE demands

psychological safety, a willingness to expose systemic

weakness without fear of reprisal. This is a radical

departure from an operations model built on "change

control" and "root cause analysis" that often seeks to

identify a human error. Without top-down executive

sponsorship to protect engineers and enforce the

blameless model, the entire SRE cultural transformation

fails.

Similarly, the error budget's power, as seen in Case B, is

entirely political. It is a policy tool that reifies reliability

as a first-class, non-negotiable feature, equal to (or

greater than) new business features. Where leadership

was willing to enforce the "feature freeze" (Case B), SRE

succeeded in creating a self-regulating system that

balanced innovation and stability. Where leadership

wavered (Case C), the error budget became

"performative metrics," and SRE failed to gain traction,

devolving into just another monitoring team.

This confirms that SRE is not a set of tools that can be

purchased. It is an organizational philosophy that must be

adopted, and this adoption directly challenges existing

power structures and deeply ingrained cultural norms.

The integration of Site Reliability Engineering principles

within legacy retail ecosystems demands a proactive

approach to fault tolerance and observability. Kumar

Tiwari et al. (2025) emphasized the value of Chaos

Engineering in strengthening resilience and ensuring

consistent service reliability in distributed environments.

This approach provides a practical foundation for

bridging traditional system limitations with modern

reliability engineering practices, enabling seamless

scalability, predictive monitoring, and operational

adaptability across hybrid infrastructures.

4.2. Validating the Phased Implementation Framework

The second research objective was to propose and

evaluate a phased framework. The experiences of the

three cases largely validate the proposed three-phase

model (Stabilize & Observe; Automate & Abstract;

Modernize & Scale) as a viable pathway.

The findings clearly show that Phase 1: 'Stabilize &

Observe' is the non-negotiable foundation. Organizations

that attempt to skip straight to automation (Phase 2) or

modernization (Phase 3) are likely to fail. As one

participant noted, "If you automate a broken process, you

just get a faster broken process." Without first

establishing what is "normal" (SLOs) and a process for

learning from failure (postmortems), any subsequent

automation or modernization efforts are based on

guesswork. The struggles of all three cases with defining

SLOs and implementing postmortems underscore that

this initial, non-technical phase requires the most focus

and executive support.

Phase 2: 'Automate & Abstract' was shown to be the

"value-delivery" phase. Toil automation (Case B)

provided immediate ROI in reclaimed engineering hours,

building credibility for the SRE team. The API

abstraction strategy (Case C) was the key technical

unlock, allowing organizations to "neuter" the risk of

their legacy systems without the astronomical cost and

risk of a full rewrite. This "Strangler Fig" approach is

perhaps the single most critical technical pattern for SRE

in a legacy context.

Phase 3: 'Modernize & Scale' was correctly identified as

the long-term, data-driven outcome. The findings

confirm that SRE is not an alternative to modernization;

it is the catalyst for it. The data generated by SRE

practices (SLO breaches, toil logs, postmortem actions)

provides the objective business case required to secure

funding and prioritize the modernization roadmap,

moving it from opinion-based to data-driven. The

emergence of hybrid infrastructure management and

AIOps (Case A) confirms this as the "future state" of a

successful legacy SRE team.

One key refinement to the model, based on the findings,

is the need to explicitly add a parallel "Executive &

Cultural" track. The framework as proposed is largely

technical and procedural. The results suggest a parallel

track (e.g., "Secure Executive Sponsorship," "Train

Middle Management," "Evangelize Psychological

Safety") is required to address the socio-technical barriers

identified.

4.3. SRE as a 'Brownfield' Modernization Catalyst

This study contributes to the broader literature on legacy

modernization. Current industry reports emphasize the

urgency of modernization, but often focus on "lift-and-

shift" to cloud or full rewrites, both of which are high-

risk. Our findings propose SRE as a third, more

incremental and data-driven path.

By "wrapping" the legacy system in SLOs and an API

abstraction layer, SRE effectively stabilizes the

"brownfield" environment. It makes the unreliable

predictable. The error budget then provides a non-

confrontational, objective language for developers and

operations—who are often organizationally siloed—to

negotiate the "cost" of new features versus the "cost" of

technical debt. SRE, in this light, is the operational

discipline that de-risks the long, multi-year journey of

incremental modernization, allowing retailers to keep

servicing customers on their old infrastructure while

safely building the new.

The adoption of SRE principles, even in non-cloud-

native environments, aligns with the core philosophies of

modern software development and DevOps. It forces

organizations to treat infrastructure as code, automate

relentlessly, and use data to make decisions, effectively

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER SCIENCE

AND IT INNOVATIONS (IJMCSIT)

https://aimjournals.com/index.php/ijmcsit

 pg. 10

bringing legacy systems into the modern engineering

fold.

4.4. Limitations of the Study

This study's findings should be interpreted in light of

several limitations.

1. Qualitative Nature: As a qualitative, multi-case

study, the findings are context-rich but not statistically

generalizable. The experiences of these three retailers

may not be representative of all retail organizations or

other industries (e.g., finance, healthcare) with different

legacy challenges.

2. Anonymization: To gain access, we had to

heavily anonymize the cases. This prevents a detailed

discussion of specific tooling choices (e.g., which APM

vendor, which automation platforms) or the specific

nature of their mainframe or POS technologies, which

could be relevant factors.

3. Time Horizon: The study captured the first 24-36

months of SRE adoption. SRE is a multi-year, or even

perpetual, journey. The long-term outcomes of these

transformations, particularly the success of Phase 3,

remain to be seen.

4. Selection Bias: The organizations that agreed to

participate are, by definition, those that are open to

reflection and likely more progressive. We did not

capture the experiences of organizations that attempted

SRE and failed completely, which could provide

important counter-narratives.

4.5. Conclusion and Future Research

This study addresses a critical gap in the literature by

examining the application of Site Reliability Engineering

principles within the challenging context of legacy retail

infrastructure. Our findings demonstrate that while "by

the book" SRE is a poor fit for monolithic, on-premise

systems, an adapted, phased approach can be highly

successful.

We found that the primary barriers to adoption are socio-

technical, centered on the cultural shift to blamelessness

and the political enforcement of error budgets. We

proposed and validated a three-phase framework (1)

Stabilize & Observe, (2) Automate & Abstract, (3)

Modernize & Scale—as a viable roadmap. The key

technical strategies identified are the "wrapping" of

monoliths with modern SLOs and API abstraction layers,

while the key cultural strategy is the data-driven

negotiation enabled by error budgets. This study

concludes that SRE is not only possible in legacy retail

but is a necessary operational discipline that acts as a

powerful, data-driven catalyst for incremental

modernization.

Future research should build on these qualitative

findings. Longitudinal studies are needed to track SRE

maturity and its impact on business metrics (e.g.,

revenue, customer satisfaction) over a 5- to 10-year

horizon. Quantitative studies could compare the

adherence to SLOs and the frequency of incidents in

legacy organizations that adopt SRE versus those that

follow traditional ITIL models. Finally, more research is

needed on the emerging challenge of managing the

hybrid SRE environment, developing the tools and team

structures needed to ensure reliability across the

widening seam between the legacy and cloud-native

worlds.

REFERENCES

1. Allspaw, J. (2017). Blameless PostMortems and a

Just Culture: A Guide to Incident Investigation. Etsy

Engineering. https://codeascraft.com

2. Beyer, B., Jones, C., Petoff, J., & Murphy, N. R.

(2016). Site Reliability Engineering: How Google

Runs Production Systems. O’Reilly Media.

3. Burns, B., Grant, B., Oppenheimer, D., Brewer, E.,

& Wilkes, J. (2016). Borg, Omega, and Kubernetes.

Communications of the ACM, 59(5), 50–57.

https://doi.org/10.1145/2890784

4. Gartner. (2023). Predicts 2023: Legacy Systems

Modernization Strategies for CIOs. Gartner

Research.

5. Kumar Tiwari, S., Sooraj Ramachandran, Paras

Patel, & Vamshi Krishna Jakkula. (2025). The Role

of Chaos Engineering in Enhancing System

Resilience and Reliability in Modern Distributed

Architectures. International Journal of

Computational and Experimental Science and

Engineering, 11(3).

https://doi.org/10.22399/ijcesen.3885

6. Kim, G., Humble, J., Debois, P., & Willis, J. (2016).

The DevOps Handbook: How to Create World-Class

Agility, Reliability, & Security in Technology

Organizations. IT Revolution Press.

7. Krief, M. (2019). Learning DevOps: Continuously

Deliver Better Software. Packt Publishing.

8. OpenSLO. (2021). Open Specification for SLOs.

https://openslo.com

9. Thongmak, M. (2022). Applying AI in IT

Operations: Anomaly Detection and Incident

Prediction in Legacy Systems. Journal of

Information Technology Management, 33(1), 35–42.

10. Woodcock, S. (2020). Automating Legacy Systems:

Practices and Pitfalls. IEEE Software, 37(4), 67–73.

https://aimjournals.com/index.php/ijmcsit
https://codeascraft.com/
https://doi.org/10.1145/2890784
https://openslo.com/

INTERNATIONAL JOURNAL OF MODERN COMPUTER SCIENCE

AND IT INNOVATIONS (IJMCSIT)

https://aimjournals.com/index.php/ijmcsit

 pg. 11

https://doi.org/10.1109/MS.2020.2996582

11. Zero-Trust Architecture in Java Microservices.

(2025). International Journal of Networks and

Security, 5(01), 202-214.

https://doi.org/10.55640/ijns-05-01-12

12. Vikram Singh, 2025, Policy Optimization for Anti-

Money Laundering (AML) Compliance using AI

Techniques: A Machine Learning Approach to

Enhance Banking Regulatory Compliance,

INTERNATIONAL JOURNAL OF

ENGINEERING RESEARCH & TECHNOLOGY

(IJERT) Volume 14, Issue 04 (April 2025)

https://aimjournals.com/index.php/ijmcsit
https://doi.org/10.1109/MS.2020.2996582
https://doi.org/10.55640/ijns-05-01-12

