INTERNATIONAL JOURNAL OF MODERN COMPUTER SCIENCE

AND IT INNOVATIONS (IJMCSIT) /lj Q
ffoim

eISSN: 3087-4297
Volume. 02, Issue. 11, pp. 01-11, November 2025"

Bridging The Gap: A Strategic Framework for Integrating Site Reliability
Engineering with Legacy Retail Infrastructure

Dr. Felicia S. Lee
School of Computing, National University of Singapore, Singapore

Ivan A. Kuznetsov
Faculty of Computer Science, Higher School of Economics, Moscow, Russia

Article received: 05/09/2025, Article Revised: 06/10/2025, Article Published: 12/11/2025

© 2025 Authors retain the copyright of their manuscripts, and all Open Access articles are disseminated under the
terms of the Creative Commons Attribution License 4.0 (CC-BY), which licenses unrestricted use, distribution, and
reproduction in any medium, provided that the original work is appropriately cited.

ABSTRACT

Background: The retail sector faces intense pressure to ensure high availability and low latency, especially during
peak traffic events. However, many established retailers operate on complex, monolithic legacy infrastructures that
are inherently resistant to modern DevOps practices. Site Reliability Engineering (SRE), pioneered in cloud-native
environments, offers a compelling model for managing reliability, yet its application in 'brownfield' legacy contexts
is poorly understood.

Objectives: This study aims to (1) analyze the socio-technical friction points when implementing SRE principles
within legacy retail organizations and (2) propose and evaluate a phased framework for this transition.

Methods: We employed a qualitative, multi-case study methodology, analyzing three anonymized retail organizations
(grocery, e-commerce, department store) undergoing SRE adoption. Data was collected through 30 semi-structured
interviews with engineering and leadership staff, supplemented by an analysis of internal documentation
(postmortems, roadmaps, and monitoring data). We analyzed these cases through the lens of a proposed three-phase
implementation framework: (1) Stabilize & Observe, (2) Automate & Abstract, and (3) Modernize & Scale.
Results: The findings indicate that the most significant barriers are cultural rather than technical, particularly the
resistance to blameless postmortems and the adoption of error budgets. Defining meaningful Service Level
Objectives (SLOs) for monolithic applications emerged as a complex initial hurdle. However, the study found that
SRE-derived data (SLO breach reports, toil logs) provided a critical, objective language for prioritizing technical
debt and de-risking modernization efforts, such as API abstraction and the introduction of new microservices.
Conclusion: SRE is a viable and necessary strategy for legacy retail, acting as a catalyst for incremental
modernization. Successful adoption hinges on adapting SRE principles, prioritizing cultural change alongside
technical automation, and using SRE metrics to bridge the divide between operations and development.

KEYWORDS

Site Reliability Engineering (SRE), Legacy Systems, Retail Technology, IT Modernization, DevOps, Service Level
Objectives (SLOs), Toil Automation.

INTRODUCTION

customer expectations. Modern consumers expect
seamless, instantaneous, and highly personalized
experiences, regardless of whether they are interacting

1.1. The Reliability Imperative in Modern Retail

The contemporary retail landscape is defined by a
relentless drive for digital transformation. The rise of e-
commerce, mobile shopping applications, and
omnichannel strategies has fundamentally altered

https://aimjournals.com/index.php/ijmcsit

with a brand online, via a mobile app, or in a physical
store. This expectation of flawless service translates into
a stringent technical requirement: near-constant
availability.

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER SCIENCE

AND IT INNOVATIONS (IJMCSIT)

In this high-stakes environment, reliability is not merely
an IT metric; it is a core business proposition. A minute
of downtime during a promotional event or, most
critically, a peak traffic period like Black Friday or a
holiday sale, can result in millions in lost revenue,
irreversible brand damage, and customer attrition. The
latency of an inventory lookup, the success rate of a
payment transaction, or the speed of a product page load
are all direct drivers of conversion rates and customer
loyalty. Consequently, the engineering challenge for
retailers is no longer just to build features, but to operate
services that are perpetually fast, available, and resilient.

1.2. The 'Legacy' Conundrum: When Infrastructure
Resists Change

While consumer-facing applications present a veneer of
modernity, the operational backbone of many established
retailers is built upon legacy infrastructure. These
'brownfield' environments are often a complex tapestry of
technologies accrued over decades. They are
characterized by monolithic architectures, where core
business functions—such as inventory management,
order processing, and point-of-sale (POS) data
synchronization—are tightly coupled within a single,
massive codebase.

This architectural approach, common in systems
developed in the 1980s and 1990s, presents profound
challenges. These systems often run on bare-metal
servers or early-generation virtual machines, managed
with manual processes and infrequent, high-risk "big
bang" release cycles. Observability is typically poor,
limited to basic server health metrics (e.g., CPU,
memory) rather than the user-centric performance
indicators required by modern services. Data is often
siloed in proprietary mainframe or AS/400 databases,
accessible only through arcane protocols. This technical
debt makes the infrastructure brittle, difficult to scale,
and terrifyingly risky to modify. The very systems
responsible for the most critical business functions are
the least adaptable to the demands of the modern
reliability imperative.

1.3. The Emergence of Site Reliability Engineering
(SRE)

In response to the challenge of managing massive,
distributed systems at scale, Google pioneered the
discipline of Site Reliability Engineering (SRE). SRE is
a prescriptive approach that treats operations as a
software engineering problem. As described by its
progenitors, SRE is "what happens when you ask a
software engineer to design an operations team." It
diverges sharply from traditional IT operations models
(like ITIL), which tend to silo development and
operations teams and manage change through rigid,
ticket-based processes.

https://aimjournals.com/index.php/ijmcsit

The SRE model is built on several core tenets. First is the
primacy of Service Level Objectives (SLOs), which are
specific, measurable, and user-centric targets for service
performance (e.g., "99.9% of checkout requests will be
successful"). These SLOs are not aspirations; they are
hard data points used to guide engineering decisions.
Second is the error budget, the mathematical inverse of
the SLO ($1 - SLOS). This budget represents the
acceptable level of failure for a service. If a service
exceeds its error budget, all new feature development is
frozen, and all engineering resources are redirected to
improving reliability. This mechanism creates a self-
regulating, data-driven balance between innovation and
stability.

Other key SRE practices include the aggressive
automation of toil (manual, repetitive, automatable
operational work) and the adoption of a blameless
postmortem culture. This culture shifts the focus of
incident investigation away from "human error" and
toward understanding the systemic and programmatic
failures that allowed an incident to occur, fostering a
climate of continuous learning and improvement

1.4. Literature Gap and Research Problem

The principles of SRE, along with the broader DevOps
movement, have been transformative for organizations
born in the cloud. An abundance of literature describes
how to implement SRE in 'greenfield' projects
characterized by microservice architectures,
containerized workloads managed by platforms like
Kubernetes, and robust public cloud infrastructure. These
environments are, by their nature, designed for the kind
of abstraction, automation, and rapid iteration that SRE
thrives upon.

However, a significant gap exists in the academic and
professional literature regarding the application of SRE
to the 'brownfield' world of legacy systems. Recent
industry analyses highlight that legacy modernization
remains a top priority for CIOs, yet the operational risks
involved are a primary barrier to progress. The central
problem is a fundamental mismatch: How can
organizations apply principles forged in the world of
ephemeral, scalable, cloud-native services to the rigid,
monolithic, on-premise infrastructure that still powers the
global retail economy?

Applying "by the book" SRE in such an environment is
often untenable. How does one define a granular SLO for
a function buried deep within a 20-year-old COBOL
mainframe application? How is an error budget enforced
when the release cycle is six months long? How can
automation be implemented when the systems lack
modern APIs? There is a critical need for a structured,
adaptive framework that bridges the gap between SRE
theory and legacy reality.

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER SCIENCE

AND IT INNOVATIONS (IJMCSIT)

1.5. Research Objectives and Article Structure

This study seeks to address this gap by investigating the
implementation of SRE within legacy-heavy retail
organizations. The research is guided by three primary
objectives:

1. To identify and analyze the specific socio-
technical friction points that arise when SRE principles
(SLOs, error budgets, blameless postmortems, toil
automation) are introduced into traditional, operations-
focused IT environments in the retail sector.

2. To propose a phased methodological framework
designed specifically for the incremental adoption of
SRE in organizations managing legacy infrastructure.

3. To evaluate the application of this framework
through a qualitative, multi-case analysis of SRE
adoption efforts, identifying common challenges and
success factors.

To achieve these objectives, this article follows the
IMRaD structure. The Methodology section details our
qualitative, multi-case study design, the criteria for case
selection, and the data collection and analysis procedures.
It also provides a comprehensive, detailed breakdown of
the proposed three-phase implementation framework that
serves as the analytical lens for the study. The Results
section presents the empirical findings from our three
case studies, structured according to this phased
framework. The Discussion section synthesizes these
findings, interprets their implications for theory and
practice, and validates the proposed framework. Finally,
the Conclusion summarizes the study's contributions,
acknowledges its limitations, and suggests avenues for
future research.

2. METHODOLOGY

2.1. Research Design: Multi-Case

Approach

A Qualitative,

To investigate the complex, nuanced, and context-
dependent phenomena of organizational and technical
change, this study employed a qualitative, multi-case
study research design. SRE adoption is not merely a
technical tooling problem; it is a profound socio-
technical transformation that involves shifts in culture,
team structure, political power, and engineering
philosophy. A quantitative approach, while useful for
measuring specific outcomes (like SLO adherence),
would fail to capture the process of adoption and the
nature of the barriers encountered.

A comparative case study approach allows for deep,
contextualized exploration of real-world
implementations. By comparing the experiences of
different organizations, we can identify emergent

https://aimjournals.com/index.php/ijmcsit

patterns, common challenges, and divergent strategies,
leading to a richer, more transferable (though not
generalizable) set of findings. This approach is ideally
suited for answering "how" and "why" questions, such as
how organizations adapt SRE principles and why certain
adaptations succeed or fail in a legacy context.

2.2. Case Selection Criteria

We purposefully selected three large, anonymized retail
organizations for this study, hereafter referred to as "Case
A," "Case B," and "Case C." Selection was based on a
specific set of criteria designed to ensure relevance to the
research questions:

1. Sector: The organization must derive the
majority of its revenue from retail operations (e.g.,
grocery, fashion, department store).

2. Legacy Infrastructure: The organization's core
business functions (e.g., inventory, POS, or core e-
commerce) must rely on systems identified by its own IT
leadership as "legacy" (e.g., monolithic architecture,
mainframe, pre-cloud COTS platforms).

3. SRE Adoption Status: The organization must
have formally initiated an SRE adoption program within
the last 24-36 months, moving beyond theoretical
discussion into active implementation.

4, Access: The organization must grant access for
researchers to conduct semi-structured interviews and
review non-sensitive internal documentation.

The three selected cases provided a diverse cross-section
of the retail legacy challenge:

° Case A (GroceryCo): A large, national grocery
chain. Its primary legacy challenge is a mainframe-based
inventory and supply chain system. This system is highly
reliable but opaque, and all new development (e.g.,
online ordering) is severely bottlenecked by the
mainframe's limited, batch-oriented integration points.

. Case B (FashionRetail): A "clicks-and-mortar"
fashion retailer. Its legacy challenge is a monolithic, first-
generation e-commerce platform (circa 2005) that has
been heavily customized. It suffers from severe
performance and scaling issues during promotional
events.

° Case C (StoreCo): A national department store
chain. Its legacy challenge is a highly disparate and aging
set of in-store Point-of-Sale (POS) systems across
hundreds of stores. These systems frequently suffer from
data synchronization failures with the central order
management system.

2.3. Data Collection

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER SCIENCE

AND IT INNOVATIONS (IJMCSIT)

Data collection occurred over a 12-month period and
employed a triangulated approach to ensure richness and
validity.

° Semi-Structured Interviews (N=30): We
conducted 30 interviews, with 10 participants from each
case organization. Participants were selected to provide a
holistic view, including:

o Traditional Operations/Infrastructure Staff
(n=12)

o Software Developers (n=9)

o Newly hired or designated SREs (n=5)

o IT Leadership (CIO, VP of Infrastructure) (n=4)

Interviews lasted 60-90 minutes and were guided by a
protocol focused on the SRE adoption process, perceived
challenges, cultural shifts, and the specific application of
SRE principles (SLOs, postmortems, etc.).

° Document Analysis: We were granted access to
a repository of internal documents, which provided
concrete artifacts of the SRE transformation. These
included:

o Blameless postmortem reports (n=15,
anonymized)

o SRE team charters and mission statements.

o Internal wiki pages and Confluence articles
defining SLOs and error budget policies.

o Excerpts from monitoring dashboards
(screenshots) and internal project roadmaps.

° Participant Observation (Limited): Where

permitted, researchers attended (as non-participant
observers) SRE team planning meetings and incident
review (postmortem) meetings (n=6). This provided
direct insight into the team dynamics and cultural
practices being enacted.

2.4. A Proposed Phased Implementation Framework
(The Analytical Model)

To guide the data analysis and structure the investigation,
we first synthesized a methodological framework from
preliminary literature and exploratory interviews. This
"Phased Implementation Framework" posits that SRE
cannot be adopted in a "big bang" in legacy
environments. Instead, it requires a gradual, incremental
approach. This framework, detailed below, serves as the
core "method" proposed by this study, which the Results
section will then use as an analytical lens to evaluate the
three case studies.

https://aimjournals.com/index.php/ijmcsit

The framework consists of three sequential, overlapping
phases:

2.4.1. Phase 1: 'Stabilize & Observe' — Establishing
Foundational Reliability

This initial phase is the most critical and focuses on
shifting the organization from a reactive, "firefighting"
posture to a proactive, data-driven one. It does not
involve significant automation or modernization but lays
the cultural and observational groundwork for all
subsequent efforts.

° 2.4.1.1. Defining Critical User Journeys (CUJs)
in a Monolithic Context: Before metrics can be
established, the team must define what to measure. In a
monolithic system, this is exceptionally difficult. A CUJ
is a user-centric path through the system that delivers
value (e.g., "User searches for product," "User adds item
to cart," "User completes checkout"). In a legacy context,
this requires identifying these journeys as they traverse
the monolith. For example, a POS "checkout" journey
might involve the local terminal, a store-level server, and
a central database, all within one application stack. The
SRE team must first map these critical flows, often
through reverse-engineering or tribal knowledge.

) 2.4.1.2. Selecting Service Level Indicators
(SLIs): An SLI is the raw metric used to measure a CUJ
(e.g., latency, error rate). This framework argues against
using traditional legacy metrics like server CPU or
memory utilization as SLIs, as these are symptoms, not
user-facing indicators. The focus must be on symptom-
based monitoring. The most effective SLIs for legacy
systems are typically "black-box" metrics measured at
the perimeter:

o Availability: The percentage of valid requests
that receive a non-error response, measured at the load
balancer or application entry point.

o Latency: The time taken to service a request, also
measured at the perimeter.

@ Success Rate: A more nuanced availability
metric, such as the percentage of "checkout" API calls
that return "success" rather than "payment failed" or
"inventory error."

° 2.4.1.3. Negotiating Initial Service Level
Objectives (SLOs): An SLO is the target for an SLI (e.g.,
"99.9% of checkout requests will be successful over a 28-
day window"). This framework posits that setting
aspirational SLOs (e.g., "five nines" or 99.999%) in a
legacy environment is counter-productive. It creates
immediate failure, demoralizes the team, and exhausts
the error budget instantly, rendering the concept useless.
Instead, the initial SLOs should be data-driven and
achievable. Teams should first measure their baseline

pg. 4

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER SCIENCE

AND IT INNOVATIONS (IJMCSIT)

performance for 30-60 days (e.g., "We are currently
99.5% successful") and set the initial SLO just above that
baseline (e.g., 99.7%). The SLO can then be
progressively tightened as reliability improves. This
negotiation is a political act, aligning Development,
Operations, and the Business on an acceptable level of
reliability.

° 2.4.1.4. Instituting the Blameless Postmortem
Culture: This is the most significant cultural component
of Phase 1. Traditional ITIL-based organizations practice
"Root Cause Analysis" (RCA), which often concludes
with "human error" and seeks an individual to blame.
SRE replaces this with a blameless postmortem culture.
This framework defines a structured process for this:

1. An incident is declared and resolved.

2. Within 72 hours, a postmortem meeting is held,
moderated by a neutral party.

3. The meeting is forbidden from using language of
blame ("Who...?", "Why did you...").

4. The focus is on a factual timeline: What
happened? What was the impact? How was it detected?
How was it remediated?

5. The analysis focuses on systemic causes: Why
was the system brittle? Why did monitoring fail to detect
it? Why was the remediation process slow?

6. The output is a document with "Corrective
Actions"—specific, assigned, and time-boxed
engineering tasks to prevent the class of problem from
recurring. This document is public to the entire
engineering organization.

2.4.2. Phase 2: 'Automate & Abstract' — Reclaiming
Engineering Time

With foundational observability and a learning culture in
place, Phase 2 focuses on using that data to actively
reduce operational load and de-risk the legacy system.

° 2.4.2.1. The 'Toil Budget' and Identification: Toil
is defined as operational work that is manual, repetitive,
automatable, tactical (not strategic), and scales linearly
with service growth. It is the "firefighting" and "grunt
work" that consumes traditional Ops teams. In this phase,
SREs are mandated to track their time, specifically
logging hours spent on toil. This data is used to establish
a "toil budget" (e.g., an SRE should spend no more than
50% of their time on toil). Any toil exceeding this budget
must be automated. This creates a data-driven incentive
to build software that automates operations. Examples in
retail include: manually restarting failed batch inventory
jobs, clearing caches, or provisioning user accounts.

° 2.4.2.2. The Error Budget Policy: As defined in

https://aimjournals.com/index.php/ijmcsit

Phase 1, the SLO creates an error budget. In Phase 2, this
budget is enforced as a policy. This is the SRE's primary
mechanism for balancing reliability and new features.
The policy, agreed upon by leadership, states: If a service
has consumed its 28-day error budget (due to outages or
performance degradation), all new feature releases for
that service are frozen. All development resources for
that service are redirected to work on the "Corrective
Actions" backlog from the postmortems until the service
is stable and operating within its SLO. This is a radical
political tool in legacy environments, as it uses objective
data to halt the business's demand for "more features" in
favor of the stability the business also demands.

° 2.4.2.3. The 'Strangler' API Abstraction Layer:
This is the primary technical strategy of Phase 2.
Modifying the core of a legacy monolith is unacceptably
risky. The "Strangler Fig" pattern (or API Abstraction)
involves "wrapping" the legacy system in a modern, well-
documented, reliable API layer. For example, instead of
allowing a new mobile app to query the mainframe
inventory database directly, it queries a modern REST
API. This APL in turn, handles the complex and brittle
interaction with the mainframe. This strategy achieves
two goals: (1) It abstracts the legacy system, making it
easier and safer for new applications to consume its data.
(2) It creates a "seam" where, in the future, the legacy
system can be replaced piece by piece behind the API
without the front-end services ever knowing.

2.4.3. Phase 3: 'Modernize & Scale' — Data-Driven
Evolution

In this phase, the SRE team transitions from stabilizing
the past to actively building the future, using the data
from Phases 1 and 2 to guide the modernization strategy.

° 2.43.1. Using SRE Data to Prioritize
Modernization: Legacy modernization is expensive and
complex. The most common question is: "Where do we
start?" The SRE data provides the answer. The backlog
of postmortem corrective actions, combined with SLO
breach reports and toil logs, creates a data-driven,
prioritized roadmap for modernization. If 60% of SLO
breaches are related to the monolithic payment
processing module, that module becomes the top priority
for being "strangled" (per 2.4.2.3) and rewritten as a
modern microservice. This moves the modernization
debate from one based on opinion and "gut feel" to one
based on objective data about user pain.

° 2.4.3.2. Introducing Cloud-Native Tooling for
New Services: This framework explicitly argues against
attempting to containerize the legacy monolith. It is not a
"lift and shift" model. Instead, SREs manage a hybrid
environment. The legacy stack is left in place, managed
by the new API abstractions and automation scripts. All
new services (e.g., the new payment microservice) are
built on a modern, containerized platform (like

pg. 5

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER SCIENCE

AND IT INNOVATIONS (IJMCSIT)

Kubernetes or a cloud provider's equivalent). The SRE
team's role expands to manage the reliability of this new
platform and, critically, the seams and dependencies
between the new microservices and the legacy API-
wrapped monoliths.

) 2.433. Integrating AlOps for Legacy
Observability: Many legacy systems produce
unstructured or non-standard logs (e.g., mainframe job
logs, COBOL error codes) that modern observability
tools cannot easily parse. Phase 3 introduces the use of
AlOps (Al for IT Operations) as an advanced solution.
Machine learning models can be trained on these
unstructured logs to identify anomalous patterns before
they trigger a user-facing SLO breach. This provides
predictive failure analysis for the systems that are the
least observable, completing the observability journey
that began in Phase 1.

2.5. Data Analysis

We employed a thematic analysis approach to analyze the
interview transcripts, observation notes, and internal
documents. The initial coding structure was based on the
three phases of our proposed framework (Stabilize &
Observe, Automate & Abstract, Modernize & Scale) and
the core SRE tenets (SLOs, Error Budgets, Postmortems,
Toil).

Two researchers independently coded a subset of the data
to establish an initial codebook and ensure inter-coder
reliability. The full dataset was then coded, with
emergent themes (e.g., "Cultural Resistance,"
"Management Buy-in," "Tooling Mismatch") being
added to the codebook. A cross-case synthesis was then
performed, comparing how each of the three
organizations (GroceryCo, FashionRetail, StoreCo)
navigated the challenges within each phase of the
framework. This comparative analysis allowed us to
refine the framework and identify the most critical
success factors and failure modes.

3. RESULTS

The analysis of the three case studies revealed a
consistent, albeit challenging, journey of SRE adoption
that broadly aligned with the proposed three-phase
framework. However, the progression was not linear, and
each organization encountered significant friction,
particularly in the cultural and political realms.

3.1. Overview of SRE Adoption Trajectories

° Case A (GroceryCo): Began SRE adoption
driven by a new CIO. The primary goal was to de-risk the
mainframe-based supply chain to support a new online
ordering initiative. They focused heavily on Phase 1
(SLOs, Postmortems) and Phase 3 (AIOps for mainframe
logs) but struggled with Phase 2 (Automation), as the

https://aimjournals.com/index.php/ijmcsit

pool of engineers with both mainframe and modern
automation skills was small.

° Case B (FashionRetail): Adoption was a
grassroots effort from the engineering team, frustrated by
constant "firefighting" during sales. They excelled at
Phase 2 (Toil Automation, Error Budgets), using the error
budget as a "weapon" to force leadership to pause
features and address technical debt. They struggled with
Phase 1, finding it hard to get business buy-in for
blameless postmortems.

o Case C (StoreCo): Adoption was top-down, part
of a major digital transformation. Their primary success
was in Phase 2 (APl Abstraction), successfully
"wrapping" their disparate POS systems in a unified API.
This immediately stabilized data synchronization. They
faced their greatest challenge in Phase 1 (SLOs), as the
performance of the in-store systems was highly variable
and difficult to measure centrally.

3.2. Phase 1 Analysis: 'Stabilize & Observe'

This phase was universally identified as the most difficult
and most important.

3.2.1. The Challenge of Defining SLOs for Monoliths

All three cases struggled to move from server-based
metrics to user-centric SLOs.

° Difficulty in Measurement: In Case C (StoreCo),
the team initially tried to set an SLO for "POS
Transaction Time." They discovered that the transaction
time was recorded in a local log on 1,200 different store
servers, in different formats, and only uploaded nightly.
It was impossible to measure in real-time. They were
forced to redefine their SLI to "API success rate" for the
central order management system receiving the data,
which was a "good enough" proxy for reliability, though
not a true measure of the user's (cashier's) experience.

° Negotiating ~ Baselines: In Case B
(FashionRetail), the e-commerce platform was
notoriously slow. The engineering team measured the
90th percentile (p90) latency for "Add to Cart" at 3.5
seconds. The business wanted an SLO of 800ms. The
SRE team, following the framework, argued that this was
aspirational and would fail immediately. As one SRE
lead stated, "We had to show them the data and say, 'The
system is this slow. We can't promise 800ms tomorrow.
Let's set the SLO at 3.0 seconds, and when we are
consistently meeting that, we can tighten it to 2.5
seconds.! It was the first honest conversation about
performance we'd ever had."

° Proxy Metrics for Mainframes: In Case A
(GroceryCo), measuring the "latency" of a batch

inventory update was nonsensical. The team shifted to a

pg. 6

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER SCIENCE

AND IT INNOVATIONS (IJMCSIT)

different CUJ: "Inventory Data Freshness." They defined
an SLI as the time elapsed between a sale occurring in-
store and that inventory change being reflected in the e-
commerce system. Their initial SLO was "99% of
inventory updates will be reflected online within 15
minutes." This was a meaningful, user-centric SLO for a
legacy batch-oriented system.

3.2.2. Cultural Barriers to Blameless Postmortems

This was, by far, the most significant socio-technical
hurdle.

) Resistance from ITIL Culture: Case A
(GroceryCo) had a deeply embedded ITIL culture. The
existing "Problem Management" team saw SRE's
blameless postmortems as a "lack of accountability." An
Operations Manager noted, "For 20 years, my job has
been to find out who made the change that broke the
system. You are asking me to ignore that and talk about
'systemic weakness.' It feels like we are letting people off
the hook." It took direct, sustained executive sponsorship
from the CIO to enforce the blameless model and protect
the engineers who were participating honestly.

° Fear of Admitting Failure: In all cases, engineers
were initially silent in postmortem meetings, fearing
retribution. The "blameless" declaration was met with
cynicism. In Case B (FashionRetail), the SRE lead had to
"sacrifice” themselves first. They moderated a
postmortem about an incident they had caused, publicly
analyzing the systemic issues (e.g., "The script | ran was
dangerous, and the system should have prevented it from
running in production. The monitoring should have
caught the impact faster.") This act of vulnerability was
cited as a turning point in building psychological safety.

° Shifting from 'Fix' to 'Prevent: The output of
traditional RCAs was almost always "re-train staff" or
"add checklist item." The output of the new SRE
postmortems was engineering work. In Case C (StoreCo),
a data sync failure postmortem produced a corrective
action: "Build a reconciliation tool that idempotently
retries failed POS uploads." This was a fundamental shift
from blaming an operator for a manual data-entry error to
building a system that was resilient to that class of error.

3.3. Phase 2 Analysis: 'Automate & Abstract'

Once baseline stability and a learning culture began to
form, teams found significant value in Phase 2.

3.3.1. Successes in Toil Reduction

Identifying and automating toil was a major "quick win"
that built momentum for SRE.

° Quantifying the Pain: In Case B (FashionRetail),
the SRE team was required to log toil. They discovered

https://aimjournals.com/index.php/ijmcsit

that two engineers were spending a combined 30 hours
per week manually clearing a specific product cache on
the monolithic e-commerce platform. As one developer
said, "We all knew it was a pain, but when leadership saw
'30 hours' on a spreadsheet, they finally approved the two
weeks of engineering time to build an automated cache
invalidation service."

) Empowering Operations: In Case A
(GroceryCo), the mainframe operations team had a 50-
page "runbook" for manually restarting failed nightly
batch jobs. The new SRE team (a mix of ops and
developers) spent three months writing Python scripts to
automate 80% of that runbook. This freed the mainframe
operators to learn new skills and contribute to
observability projects, rather than just "babysitting the
batch."

3.3.2. The Error Budget as a Political Tool

This was the most controversial, yet most powerful, SRE
concept.

) Forcing the Reliability Conversation: In Case B
(FashionRetail), the e-commerce platform chronically
breached its newly established latency SLO (p90 > 3.0s),
exhausting its error budget two weeks into every month.
The marketing team wanted to launch a new
personalization engine. Following the new policy, the
SRE team announced a "feature freeze." The VP of
Marketing escalated to the CTO, who pointed to the data:
"We cannot add new features to a system that is already
failing our users." The personalization project was
paused for one quarter, and engineering resources were
redirected to optimize the database query cache and
image rendering pipeline. The p90 latency dropped to 2.2
seconds. This event, cited by all participants in Case B,
cemented the SRE team's authority and the value of the
error budget.

. Failure to Enforce: In Case C (StoreCo),
leadership was unwilling to enforce the error budget
policy. The POS API service was consistently breaching
its SLOs, but the business "accepted the risk" and
continued to push for new in-store features. The SRE
team's alerts became "noise," and morale plummeted. An
SRE there noted, "An error budget without teeth is just
another dashboard. It has no power. We measure the
failures, but we aren't allowed to stop them from
happening."

3.3.3. API Abstraction as a Decoupling Strategy

The "Strangler Fig" pattern was a universally successful
technical strategy.

° De-Risking the POS: Case C (StoreCo) provides
the clearest example. The project to replace all 1,200 POS
terminals was a non-starter (estimated $50M+ cost).

pg. 7

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER SCIENCE

AND IT INNOVATIONS (IJMCSIT)

Instead, the SRE team led the development of a modern,
central "POS Abstraction APL" This API accepted data
from all the different, aging POS models and formats,
transformed it, and fed it reliably to the central systems.
This $1M project solved the data synchronization failures
within six months. It also meant that new services, like a
mobile "scan-and-go" app, could be built to talk to this
single, modern API, completely ignorant of the legacy
mess behind it.

) Unlocking Mainframe Data: In Case A
(GroceryCo), the new online ordering system needed
real-time inventory. The mainframe team (now part of the
SRE org) built a "change-data-capture" service that
streamed inventory changes from the mainframe
database to a Kafka queue, which then populated a
modern API. This "Inventory API" provided sub-second
inventory data to the e-commerce site, effectively turning
a 50-year-old batch system into a (near) real-time service
without touching the core COBOL code.

3.4. Phase 3 Analysis: 'Modernize & Scale'

This phase was the least mature in all cases, but the
trajectory was clear.

3.4.1. Prioritizing Modernization via SRE Data
SRE data became the new language of prioritization.

° From "Gut Feel" to Data-Driven: Before SRE,
the modernization roadmap in Case B (FashionRetail)
was, as one director put it, "a shouting match between the
marketing team and the highest-paid engineer." After
SRE, the postmortem corrective action backlog and the
SLO breach reports provided an objective list. The team
analyzed six months of data and found that 55% of all
error budget consumption was linked to the monolithic
"Checkout" service. This service was immediately
targeted as the first piece of the monolith to be
"strangled" and rewritten as a separate microservice.

° Justifying the Cost: In Case A (GroceryCo), the
SRE team used toil data to justify modernization. They
calculated the engineering hours spent manually
managing the batch jobs (per 3.3.1) and presented the
annual, fully-loaded cost to the CIO. This cost was so
high that it easily justified the budget for a modern
workload automation scheduler, demonstrating a clear
ROI for modernization.

3.4.2. The Hybrid Infrastructure Challenge

All organizations were now managing a hybrid
environment, which created new SRE challenges.

) Managing the Seams: As Case B (FashionRetail)

began building its new "Checkout" microservice on
Kubernetes, the SRE team's focus shifted. They were

https://aimjournals.com/index.php/ijmcsit

now responsible for both the legacy monolith (on VMs)
and the new Kubernetes platform. The most complex
incidents were those that occurred at the "seam" between
the two—for example, when the new microservice called
an old API on the monolith, causing a database
connection pool to exhaust. The SRE team had to have
"full-stack" knowledge of both worlds, a skillset that was
extremely difficult to hire or train.

° Tooling Gaps: The teams' new, modern
observability tools worked perfectly for the Kubernetes
side but struggled to ingest and correlate data from the
legacy side. This created a "split-brain" monitoring
scenario, making it hard to trace a single user request
(CUJ) as it hopped from a new microservice to a legacy
API and back.

3.4.3. Early Adoption of AIOps

Case A (GroceryCo) was the only organization actively
experimenting with AIOps, with promising results.

) Predictive Failure for Mainframes: The
mainframe system produced tens of thousands of cryptic
log messages nightly. It was impossible for a human to
review. The SRE team partnered with a vendor to train an
AlOps model on these logs. After three months, the
model began to successfully identify anomalous log
patterns 1-2 hours before the associated batch job would
fail. This allowed the SRE team to proactively intervene
and prevent a failure that would have previously breached
the "Inventory Data Freshness" SLO. An operations
engineer remarked, "It's the first time in my career we've
ever fixed a mainframe problem before it happened."

4. DISCUSSION

The findings from these three case studies provide
significant insights into the adaptation of Site Reliability
Engineering within legacy retail environments. This
discussion synthesizes these findings to address the
research objectives, validate the proposed framework,
and explore the broader implications for both theory and
practice.

4.1. SRE in Legacy Contexts: An Interpretive Synthesis

Our first research objective was to identify the socio-
technical friction points. The results overwhelmingly
indicate that SRE adoption in legacy organizations is
primarily a cultural and political challenge, not a
technical one. The technical hurdles, while significant
(e.g., measuring monoliths, automating mainframes),
were solvable with dedicated engineering effort. The
socio-technical barriers, however, proved far more
resilient.

The resistance to blameless postmortems, as seen in Case
A, highlights the deep-seated nature of a "blame culture"

pg. 8

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER SCIENCE

AND IT INNOVATIONS (IJMCSIT)

within traditional ITIL-based operations. SRE demands
psychological safety, a willingness to expose systemic
weakness without fear of reprisal. This is a radical
departure from an operations model built on "change
control" and "root cause analysis" that often seeks to
identify a human error. Without top-down executive
sponsorship to protect engineers and enforce the
blameless model, the entire SRE cultural transformation
fails.

Similarly, the error budget's power, as seen in Case B, is
entirely political. It is a policy tool that reifies reliability
as a first-class, non-negotiable feature, equal to (or
greater than) new business features. Where leadership
was willing to enforce the "feature freeze" (Case B), SRE
succeeded in creating a self-regulating system that
balanced innovation and stability. Where leadership
wavered (Case C), the error budget became
"performative metrics," and SRE failed to gain traction,
devolving into just another monitoring team.

This confirms that SRE is not a set of tools that can be
purchased. It is an organizational philosophy that must be
adopted, and this adoption directly challenges existing
power structures and deeply ingrained cultural norms.

The integration of Site Reliability Engineering principles
within legacy retail ecosystems demands a proactive
approach to fault tolerance and observability. Kumar
Tiwari et al. (2025) emphasized the value of Chaos
Engineering in strengthening resilience and ensuring
consistent service reliability in distributed environments.
This approach provides a practical foundation for
bridging traditional system limitations with modern
reliability engineering practices, enabling seamless
scalability, predictive monitoring, and operational
adaptability across hybrid infrastructures.

4.2. Validating the Phased Implementation Framework

The second research objective was to propose and
evaluate a phased framework. The experiences of the
three cases largely validate the proposed three-phase
model (Stabilize & Observe; Automate & Abstract;
Modernize & Scale) as a viable pathway.

The findings clearly show that Phase 1: 'Stabilize &
Observe' is the non-negotiable foundation. Organizations
that attempt to skip straight to automation (Phase 2) or
modernization (Phase 3) are likely to fail. As one
participant noted, "If you automate a broken process, you
just get a faster broken process." Without first
establishing what is "normal" (SLOs) and a process for
learning from failure (postmortems), any subsequent
automation or modernization efforts are based on
guesswork. The struggles of all three cases with defining
SLOs and implementing postmortems underscore that
this initial, non-technical phase requires the most focus
and executive support.

https://aimjournals.com/index.php/ijmcsit

Phase 2: 'Automate & Abstract' was shown to be the
"value-delivery" phase. Toil automation (Case B)
provided immediate ROI in reclaimed engineering hours,
building credibility for the SRE team. The API
abstraction strategy (Case C) was the key technical
unlock, allowing organizations to "neuter" the risk of
their legacy systems without the astronomical cost and
risk of a full rewrite. This "Strangler Fig" approach is
perhaps the single most critical technical pattern for SRE
in a legacy context.

Phase 3: '"Modernize & Scale' was correctly identified as
the long-term, data-driven outcome. The findings
confirm that SRE is not an alternative to modernization;
it is the catalyst for it. The data generated by SRE
practices (SLO breaches, toil logs, postmortem actions)
provides the objective business case required to secure
funding and prioritize the modernization roadmap,
moving it from opinion-based to data-driven. The
emergence of hybrid infrastructure management and
AlOps (Case A) confirms this as the "future state" of a
successful legacy SRE team.

One key refinement to the model, based on the findings,
is the need to explicitly add a parallel "Executive &
Cultural" track. The framework as proposed is largely
technical and procedural. The results suggest a parallel
track (e.g., "Secure Executive Sponsorship," "Train
Middle Management," "Evangelize Psychological
Safety") is required to address the socio-technical barriers
identified.

4.3. SRE as a 'Brownfield' Modernization Catalyst

This study contributes to the broader literature on legacy
modernization. Current industry reports emphasize the
urgency of modernization, but often focus on "lift-and-
shift" to cloud or full rewrites, both of which are high-
risk. Our findings propose SRE as a third, more
incremental and data-driven path.

By "wrapping" the legacy system in SLOs and an API
abstraction layer, SRE effectively stabilizes the
"brownfield" environment. It makes the unreliable
predictable. The error budget then provides a non-
confrontational, objective language for developers and
operations—who are often organizationally siloed—to
negotiate the "cost" of new features versus the "cost" of
technical debt. SRE, in this light, is the operational
discipline that de-risks the long, multi-year journey of
incremental modernization, allowing retailers to keep
servicing customers on their old infrastructure while
safely building the new.

The adoption of SRE principles, even in non-cloud-
native environments, aligns with the core philosophies of
modern software development and DevOps. It forces
organizations to treat infrastructure as code, automate
relentlessly, and use data to make decisions, effectively

pg. 9

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER SCIENCE

AND IT INNOVATIONS (IJMCSIT)

bringing legacy systems into the modern engineering
fold.

4.4. Limitations of the Study

This study's findings should be interpreted in light of
several limitations.

1. Qualitative Nature: As a qualitative, multi-case
study, the findings are context-rich but not statistically
generalizable. The experiences of these three retailers
may not be representative of all retail organizations or
other industries (e.g., finance, healthcare) with different
legacy challenges.

2. Anonymization: To gain access, we had to
heavily anonymize the cases. This prevents a detailed
discussion of specific tooling choices (e.g., which APM
vendor, which automation platforms) or the specific
nature of their mainframe or POS technologies, which
could be relevant factors.

3. Time Horizon: The study captured the first 24-36
months of SRE adoption. SRE is a multi-year, or even
perpetual, journey. The long-term outcomes of these
transformations, particularly the success of Phase 3,
remain to be seen.

4. Selection Bias: The organizations that agreed to
participate are, by definition, those that are open to
reflection and likely more progressive. We did not
capture the experiences of organizations that attempted
SRE and failed completely, which could provide
important counter-narratives.

4.5. Conclusion and Future Research

This study addresses a critical gap in the literature by
examining the application of Site Reliability Engineering
principles within the challenging context of legacy retail
infrastructure. Our findings demonstrate that while "by
the book" SRE is a poor fit for monolithic, on-premise
systems, an adapted, phased approach can be highly
successful.

We found that the primary barriers to adoption are socio-
technical, centered on the cultural shift to blamelessness
and the political enforcement of error budgets. We
proposed and validated a three-phase framework (1)
Stabilize & Observe, (2) Automate & Abstract, (3)
Modernize & Scale—as a viable roadmap. The key
technical strategies identified are the "wrapping" of
monoliths with modern SLOs and API abstraction layers,
while the key cultural strategy is the data-driven
negotiation enabled by error budgets. This study
concludes that SRE is not only possible in legacy retail
but is a necessary operational discipline that acts as a
powerful, data-driven catalyst for incremental
modernization.

https://aimjournals.com/index.php/ijmcsit

Future research should build on these qualitative
findings. Longitudinal studies are needed to track SRE
maturity and its impact on business metrics (e.g.,
revenue, customer satisfaction) over a 5- to 10-year
horizon. Quantitative studies could compare the
adherence to SLOs and the frequency of incidents in
legacy organizations that adopt SRE versus those that
follow traditional ITIL models. Finally, more research is
needed on the emerging challenge of managing the
hybrid SRE environment, developing the tools and team
structures needed to ensure reliability across the
widening seam between the legacy and cloud-native
worlds.

REFERENCES

1. Allspaw, J. (2017). Blameless PostMortems and a
Just Culture: A Guide to Incident Investigation. Etsy
Engineering. https://codeascraft.com

2. Beyer, B., Jones, C., Petoff, J., & Murphy, N. R.
(2016). Site Reliability Engineering: How Google
Runs Production Systems. O’Reilly Media.

3. Burns, B., Grant, B., Oppenheimer, D., Brewer, E.,
& Wilkes, J. (2016). Borg, Omega, and Kubernetes.
Communications of the ACM, 59(5), 50-57.
https://doi.org/10.1145/2890784

4. Gartner. (2023). Predicts 2023: Legacy Systems
Modernization Strategies for CIOs. Gartner
Research.

5. Kumar Tiwari, S., Sooraj Ramachandran, Paras
Patel, & Vamshi Krishna Jakkula. (2025). The Role
of Chaos Engineering in Enhancing System
Resilience and Reliability in Modern Distributed
Architectures. International Journal of
Computational and Experimental Science and
Engineering, 11(3).
https://doi.org/10.22399/ijcesen.3885

6. Kim, G., Humble, J., Debois, P., & Willis, J. (2016).
The DevOps Handbook: How to Create World-Class
Agility, Reliability, & Security in Technology
Organizations. IT Revolution Press.

7. Krief, M. (2019). Learning DevOps: Continuously
Deliver Better Software. Packt Publishing.

8. OpenSLO. (2021). Open Specification for SLOs.
https://openslo.com

9. Thongmak, M. (2022). Applying Al in IT
Operations: Anomaly Detection and Incident
Prediction in Legacy Systems. Journal of
Information Technology Management, 33(1), 35-42.

10. Woodcock, S. (2020). Automating Legacy Systems:
Practices and Pitfalls. IEEE Software, 37(4), 67-73.
pg. 10

https://aimjournals.com/index.php/ijmcsit
https://codeascraft.com/
https://doi.org/10.1145/2890784
https://openslo.com/

INTERNATIONAL JOURNAL OF MODERN COMPUTER SCIENCE

AND IT INNOVATIONS (IJMCSIT)

11.

12.

https://doi.org/10.1109/MS.2020.2996582

Zero-Trust Architecture in Java Microservices.
(2025). International Journal of Networks and
Security, 5(01), 202-214.
https://doi.org/10.55640/ijns-05-01-12

Vikram Singh, 2025, Policy Optimization for Anti-
Money Laundering (AML) Compliance using Al
Techniques: A Machine Learning Approach to
Enhance Banking Regulatory = Compliance,
INTERNATIONAL JOURNAL OF
ENGINEERING RESEARCH & TECHNOLOGY
(DERT) Volume 14, Issue 04 (April 2025)

https://aimjournals.com/index.php/ijmcsit

pg. 11

https://aimjournals.com/index.php/ijmcsit
https://doi.org/10.1109/MS.2020.2996582
https://doi.org/10.55640/ijns-05-01-12

