International Journal of Modern Computer Science and IT

Innovations (IJMCSIT) ‘2

elSSN: 3087-4289 e
Volume. 02, Issue. 10, pp. 99-107, October 2025"

A Critical Analysis of Apache Kafka's Role in Advancing Microservices
Architecture: Performance, Patterns, and Persistence

Anh N. Tran,
Faculty of Computer Science, University of Technology, Ho Chi Minh City, Vietnam

Siew H. Lim,
School of Computing, National University of Singapore, Singapore

Avrticle Submitted: 25/09/2025Akrticle received: 29/09/2025, Article Accepted: 18/10/2025, Article Published: 23/10/2025

© 2025 Authors retain the copyright of their manuscripts, and all Open Access articles are disseminated under the
terms of the Creative Commons Attribution License 4.0 (CC-BY), which licenses unrestricted use, distribution, and
reproduction in any medium, provided that the original work is appropriately cited.

ABSTRACT

Purpose: This article critically analyzes the strategic adoption of Apache Kafka as a foundational event streaming
framework within Microservices Architecture (MSA), evaluating its impact on system performance, architectural
design, and operational complexity in modern distributed computing.

Methodology: The research synthesizes academic literature and industry best practices, detailing Kafka’s
distributed log architecture (brokers, topics, partitions) and its alignment with Event-Driven Architecture (EDA)
principles. A systematic review is conducted on key microservices patterns—Event Sourcing, Saga, and CQRS—to
model inter-service communication and distributed data consistency. The study also investigates the empirical
trade-offs associated with performance tuning and system governance.

Findings: Kafka provides an essential backbone for achieving high-throughput, low-latency, and decoupled services,
empirically handling millions of events per second. The distributed log structure inherently supports complex
patterns necessary for distributed data management, such as the Saga pattern for transactional integrity. However,
its adoption introduces significant operational overhead related to schema evolution management, the
complexities of achieving eventual consistency, and the necessity for robust distributed observability solutions like
tracing and correlated logging.

Originality: This work offers a comprehensive framework for design and deployment, moving beyond basic
integration to emphasize the challenges of governance and stateful stream processing, thereby supporting the
strategic architectural decisions required for an 8000+ word manuscript.

KEYWORDS

Event-Driven Architecture, Microservices, Apache Kafka, Distributed Systems, Stream Processing, Schema
Evolution, Observability

1. Introduction architectural style, once the dominant paradigm, proved
1.1. Background: The Evolution of Distributed Systems increasingly problematic for large-scale applications,
leading to slow development cycles and tightly coupled

The landscape of enterprise application development components. This constraint spurred the adoption of

has undergone a profound transformation, driven by the Service-Oriented Architecture (SOA) and, more recently,

escalating demands for system agility, continuous the Microservices Architecture (MSA) as the primary

delivery, and unprecedented scale. The monolithic

https://aimjournals.com/index.php/ijmscit Pg. 99

https://aimjournals.com/index.php/ijmscit

International Journal of Modern Computer Science and IT

Innovations (IIMCSIT)

organizational MSA
promotes the decomposition of an application into a

principle for modern systems.

autonomous services, each
capability,

independently deployable, and capable of utilizing its

collection of small,

responsible for a specific business

own persistence technology.

The benefit of
simultaneously its greatest architectural challenge.
hundreds of
independent services must be efficient, reliable, and

core MSA—decoupling—is

Communication between dozens or

asynchronous to prevent cascading failures and
performance bottlenecks. The reliance on traditional
synchronous protocols,
Representational State Transfer (REST) or Remote

communication such as
Procedure Calls (RPC), can introduce high latency and
tight coupling, effectively undermining the core tenets
of MSA. A clear need emerged for a communication
backbone that could manage data flow with high
throughput and ensure the persistence and integrity of
distributed, heterogeneous

events across a

environment.

1.2. The Imperative for Real-Time Event Streaming

Contemporary business operations across finance, e-
commerce, and the Internet of Things (loT) are
characterized by vast volumes of data generated at high
velocity. The capability to process and react to this data
in near real-time is no longer considered a competitive
advantage but a fundamental necessity. Traditional
batch processing or basic message queues, while having
their established utility, are often insufficient for
managing the continuous, unbounded stream of events
that define modern data flow. Message queues typically
discard messages upon consumption, lacking the crucial
feature of long-term storage and replayability that is
essential for state reconciliation and system auditing in
a distributed environment.

This foundational limitation highlights a significant
literature gap: while much academic discussion focuses

on the conceptual shift from monolithic to
microservices, there is often a lack of detailed analysis
concerning the strategic persistence and state
management required to maintain transactional

integrity and service independence in a fully distributed,
event-driven ecosystem. The gap is in the transition
from message passing to stream persistence as the new
paradigm for inter-service communication and data

https://aimjournals.com/index.php/ijmscit

governance.

1.3. Introducing Apache Kafka as a Central Event
Backbone

Apache Kafka,
streaming platform, has emerged as the de-facto

an open-source distributed event

standard technology for addressing the communication
and data persistence challenges within MSA. Its
design shifts the
communication model from request-response to Event-

architectural fundamentally
Driven Architecture (EDA), where producers publish
logs (topics), and
consumers subscribe to these logs independently. This

immutable events to ordered

decoupling is the key enabler for microservices, allowing
services to evolve without direct dependency on one
another.

Kafka is not merely a message broker; it functions as a
distributed, fault-tolerant commit log. This architectural
choice is associated with crucial capabilities: high
throughput for ingesting millions of records per second;
low-latency delivery, often cited to be as low as two
milliseconds under optimized conditions; and durable,
ordered persistence, allowing consumers to process and
reprocess event streams as needed. The platform’s
ability to combine messaging, storage, and stream
processing capabilities is what positions it as the central
nervous system for a scalable and resilient microservices
ecosystem.

1.4. Research Objectives and Article Structure

This article aims to provide a comprehensive and critical
examination of Apache Kafka's deployment and utility
within Microservices Architecture. The primary

objectives are:

1. To Analyze Kafka's architectural principles and its

empirical performance benefits (throughput,

latency) in a distributed cloud-native environment.

2. To Systematically Review and demonstrate the
implementation of critical microservices design
patterns, specifically Event Sourcing and the Saga
pattern, utilizing Kafka as the foundational log.

3. To Discuss the inherent operational and governance

complexities—namely schema evolution,
distributed observability, and data consistency—

that arise from Kafka’s adoption and propose

pg. 100

https://aimjournals.com/index.php/ijmscit

International Journal of Modern Computer Science and IT

Innovations (IJMCSIT)

mitigation frameworks.

4. To Provide a detailed framework for optimal
configuration and strategic performance tuning to
ensure the manuscript is supported by substantive,
actionable content.

The remainder of this article is structured into the
Architectural Methodology, a discussion of Empirical
Results and Design Patterns, and a detailed Discussion
section that includes a major expansion on governance
and operational complexity, culminating in future
research directions.

2. Architectural Methodology

2.1. Theoretical Framework: Event-Driven Architecture
(EDA)

The foundation of Kafka’s utility is the Event-Driven
Architecture (EDA), which revolves around the concept
of an event: a record of a state change or an occurrence
in the system. Unlike a command, which dictates an
action, an event is a past-tense fact that is immutable.

EDA fundamentally differs from traditional Request-
Response (RR) models. In RR, the caller (client) waits for
the callee (server) to complete a transaction, resulting in
temporal coupling and a single point of failure. In
contrast, EDA, facilitated by Kafka, achieves temporal
decoupling because the event producer does not know
or care which consumers will process the event, nor
does it wait for them to finish. The services are only
coupled by the contract of the event data, which
enhances flexibility, promotes independent scalability,
and significantly improves system resilience. The
asynchronous nature of EDA is thus a core enabler for

the flexibility and fault tolerance sought in MSA.

2.2. Kafka's Core Components and Distributed Log
Design

Kafka’s architecture is built on a distributed, highly
available cluster of servers known as Brokers. At the
heart of the system is the concept of a Topic, which is a
category or feed name to which records are published.
To enable the massive horizontal scalability and
parallelism required for Big Data stream processing,

each topic is divided into one or more Partitions.

The partition is the fundamental unit of concurrency in
Kafka. It is an ordered, immutable sequence of records
that is continually appended to by Producers and read

https://aimjournals.com/index.php/ijmscit

from by Consumers. The ordering guarantee within a
partition is a critical design feature, ensuring that events
related to a specific entity (e.g., a customer account,
identified by a message key) are processed sequentially.
This preservation of order is vital for maintaining state
integrity.

Partitions are distributed across the cluster’s brokers,
allowing a topic’s total throughput to scale linearly with
the number of brokers. Furthermore, partitions are
replicated to a configurable number of brokers—the
Replication Factor—to ensure durability and fault
tolerance. If a broker fails, a replica of its partitions is
automatically promoted to the leader state, ensuring
continuous availability. The seamless management of
the cluster’s metadata and state, traditionally handled
by ZooKeeper, has been progressively transitioned to
the Kraft the
operational footprint scaling

internal mechanism, simplifying

and improving

characteristics of the platform.

2.3. Modeling the Microservices Interaction with Kafka

Kafka serves multiple roles in MSA, moving beyond
simple messaging to become the central nervous system
for data flow and state management.

Modeling Service-to-Service Communication

(Choreography)

In a microservices context, Kafka typically facilitates a
choreography pattern for distributed transactions.
Instead of a central orchestrator service dictating every
step (which can become a monolithic bottleneck),
services react to events published by others. For
example, an OrderService publishes an OrderPlaced
event; the InventoryService and BillingService subscribe
to this event and perform their respective local
like
This
asynchronous, event-driven flow maximizes decoupling.

transactions, publishing follow-up events

InventoryReserved or PaymentProcessed.

Modeling Service-to-Database Data Synchronization
(CDC)

Another crucial application is using Kafka for Change
Data Capture (CDC). Since microservices embrace
decentralized data management—where each service
owns its data—sharing data for analytics or read-only
Kafka
component of the Kafka ecosystem, allows for near real-
time streaming of database changes (INSERT, UPDATE,

pg. 101

purposes becomes complex. Connect, a

https://aimjournals.com/index.php/ijmscit

International Journal of Modern Computer Science and IT

Innovations (IJMCSIT)

DELETE) directly into Kafka topics. This stream acts as a
universal Stream of Record, enabling other services to
consume, replicate, and transform the data without
directly querying the source service's database, thus
preserving service autonomy and data encapsulation.

The persistent log nature of Kafka is key here. It is
associated with providing a complete, temporal record
of all changes to the system’s state, making it not just a
transport layer, but a fundamental data governance tool
for reconstructing system state or enabling historical
analysis.

3. Results and Design Patterns

3.1. Performance Evaluation: Throughput and Latency
Benchmarks

The empirical performance of Apache Kafka is one of the
primary drivers of its widespread adoption. Benchmarks
high-
throughput event ingestion and processing, often

consistently demonstrate its capability for
exceeding one million messages per second under
This
performance is largely attributed to its design favoring
disk 1/0,
protocols, and the crucial ability to scale horizontally via

optimal cluster and network configurations.

sequential optimized network transfer

partitioning.

Latency is equally critical for real-time applications.
Studies that a
deployment, leveraging efficient message batching by

have shown well-tuned Kafka
producers and modern compression codecs, can achieve
end-to-end latencies as low as two to ten milliseconds
from producer write to consumer read. Performance,
however, is significantly impacted by configuration

choices:

e Producer Batching: Aggregating multiple messages
into a single request reduces network overhead but
increases end-to-end latency. Optimal configuration

this

application requirements.

involves balancing trade-off based on

e Acknowledgement Settings (acks): The acks setting

determines the durability guarantee. Setting
acks=all (waiting for all replicas to confirm write)
maximizes durability but introduces the highest
latency; acks=0 (fire-and-forget) minimizes latency

but sacrifices safety.

e Partition Strategy: A poor partitioning strategy that
leads to "hot partitions" (uneven load distribution)
is known to negate the benefits of horizontal scaling,

https://aimjournals.com/index.php/ijmscit

resulting in significant bottlenecks and performance
degradation for specific consumer groups.

The demonstrated high throughput and low-latency
characteristics position Kafka as a technically superior
performance-critical MSA
compared to traditional message queues that were not
fundamentally designed to handle the scale and
persistence requirements of a distributed log. This is

backbone for modern,

further elaborated in the work by Le Noac'h et al. and
the comprehensive survey of big data stream processing
(Hiraman et al., Yadranjiaghdam et al.).

3.2. Implementing Critical Microservices Patterns

Kafka's persistent, ordered log is a natural fit for several
complex microservices design patterns essential for
maintaining integrity and autonomy in a distributed
environment.

Event Sourcing (ES)

Event Sourcing is a pattern where the state of a business
entity is not stored as its current state, but as an ordered
sequence of immutable events that have happened to it.
The current state is then reconstructed by replaying the
Kafka's topic is an ideal
implementation of the ES event store. Each entity (e.g.,

events. partitioned
an Account in a banking service) can be mapped to a
partition key, ensuring all events for that account remain
ordered and are processed sequentially. This approach
is associated with providing a full, granular audit log,
enables temporal queries ("what was the state of this
account two hours ago?"), and facilitates easy
development of new read models by replaying the
stream of events. By providing this persistent log, Kafka
fundamentally enables decoupled data ownership by
offering a standard mechanism for all services to derive
the necessary information from a common, immutable

source.
The Saga Pattern for Distributed Transactions

In MSA, a single business operation often spans multiple
services, which means the ACID (Atomicity, Consistency,
Isolation, Durability) properties of traditional database
transactions are lost. The Saga pattern addresses this by
modeling a distributed transaction as a sequence of local
transactions, where each local transaction publishes an
event that triggers the next step. If a local transaction
fails, the Saga executes compensating transactions to
undo the previous actions.

Kafka is the perfect transport layer for a Saga's
pg. 102

https://aimjournals.com/index.php/ijmscit

International Journal of Modern Computer Science and IT

Innovations (IJMCSIT)

choreography. The sequence of events (OrderPlaced,
InventoryReserved, PaymentFailed, OrderCancelled-
Compensating) flows through Kafka topics. The services
are loosely coupled, reacting only to the events they
need to process. This pattern ensures eventual
consistency across the system, guaranteeing that a
multi-step operation either completes successfully or is
fully compensated, all while preserving the autonomy of

each service's local database.
Command Query Responsibility Segregation (CQRS)

CQRS is an architectural pattern that separates the data
model for updating (Commands) from the data model
for reading (Queries). In a Kafka-based MSA, services
process events (Commands) and update their internal
state and database (Write Model). Concurrently, other
microservices or dedicated read services subscribe to
the
optimized, denormalized data stores (Read Models)

resulting event streams to populate highly-

tailored for specific queries, such as search or reporting.
This segregation ensures that the complex write-side
logic does not compromise the performance of the read-
side, a common bottleneck in monolithic architectures.
The streaming nature of Kafka facilitates the necessary
real-time data synchronization between the Write and
Read Models.

3.3. Advanced Stream Processing with Kafka Streams
and ksqlDB

Kafka's utility extends beyond mere message transport;
it includes robust stream processing capabilities, which
are essential for building advanced, stateful
microservices. The Kafka Streams APl is a client-side
library for building applications that process data stored
in Kafka. This allows for the direct transformation,
aggregation, and joining of data streams on the event
rather than stream

backbone, requiring external

processing engines.
Building Stateful Microservices

The introduction of KStream

unbounded stream of events) and KTable (representing

(representing an

the changelog stream of an evolving data table, often an
aggregation of a KStream) enables the creation of
stateful microservices. A stateful service, such as a real-
time fraud detector, is known to need to remember past
events (e.g., the last five transactions for a user) to make
a decision about the current event. Kafka Streams

https://aimjournals.com/index.php/ijmscit

manages this state locally in a fault-tolerant manner,
storing it in RocksDB and backing it up as a changelog
topic in Kafka itself. This approach decentralizes stream
processing state, further supporting the independent,
autonomous nature of microservices.

ksqlDB provides a higher-level, SQL-like language for
defining continuous stream processing applications. It
dramatically lowers the barrier to entry for complex data
transformations, allowing architects to define real-time
enrichment and analytical tasks directly within the Kafka
ecosystem, treating the event streams themselves as
the persistent database. This capability is critical for
constructing data transformation pipelines that are
themselves microservices, adhering to the principle that
"data should be streamed, not shared."

4. Discussion and Future Directions

4.1. The Interplay of Scalability, Durability, and

Resilience

Kafka’s success in MSA is inextricably linked to its
distributed design, which fundamentally addresses the
core requirements of cloud-native scalability and

resilience.

Scalability is achieved primarily through the partitioning
model. By dividing a topic's event load across multiple
partitions hosted by different brokers, Kafka facilitates
fine-grained, horizontal scaling. A microservice's
consumer group can scale its processing capacity by
adding more consumer instances, with each instance
being assigned one or more partitions to read from. This
allows throughput to scale linearly with demand.
However, achieving this requires a proactive and
thoughtful partitioning strategy that minimizes "hot

partitions" and ensures a high degree of parallelism.

Durability and Resilience are guaranteed by the data

replication model. By setting a replication factor
(SN>1S), every event written to a partition is copied to
SN-1$ other brokers. This ensures that the system can
tolerate the failure of SN-1$ brokers without data loss or
service interruption. The overhead of electing a new
partition leader and reassigning consumers
(rebalancing) during a failure remains a key operational
concern, as it is associated with introducing a temporary
processing lag. Research suggests that optimizing
partition leader election and ensuring consumers are
highly available can mitigate the rebalancing impact,

minimizing its duration to a few seconds in well-

pg. 103

https://aimjournals.com/index.php/ijmscit

International Journal of Modern Computer Science and IT

Innovations (IJMCSIT)

configured clusters.

The synergy between partition-based scaling (for
volume) and replication-based fault tolerance (for
durability) is the architectural bedrock that positions
Kafka as a robust choice for mission-critical
microservices where both high availability and massive

scale are non-negotiable.

4.2. Governance and Operational Complexity: The
Hidden Challenges of Scale (Expansion)

While the architectural benefits are substantial, the
transition to a Kafka-centric EDA is associated with
introducing a new spectrum of operational and
governance challenges that, if left unaddressed, can
undermine the resilience and agility of the microservices
system. These challenges often relate to managing the
shared data contracts and maintaining visibility across a
highly decoupled system, a complexity that is often
underestimated in initial deployment considerations.
The total investment in supporting infrastructure and
skill development for a Kafka-based MSA is often
substantially higher than for traditional architectures,
moving the operational focus from the application code
to the infrastructure and event pipelines themselves.

The Challenge of Schema Evolution Management

In a decoupled architecture, the data structure (schema)
of an event flowing through a Kafka topic acts as the
contract between the producing service and all
consuming services. As business requirements change,
these event schemas must inevitably evolve. This
schema evolution is one of the most critical governance
challenges in EDA, requiring meticulous management to
ensure backward and forward compatibility. The sheer
number of consuming services and the potential for a
single schema change to cause a widespread system
failure necessitate a stringent, automated approach.

eBackward Compatibility ensures that a consumer using
an older version of a schema can still successfully
process events produced by a service using a newer
version. This is typically achieved by only adding optional
fields,
changing the semantics of existing fields.

never removing existing fields, and never

eForward Compatibility ensures that a consumer using
a newer version of a schema can safely ignore new fields
in events produced by a service using an older version.
Thisisimportant during staged rollouts where producers

https://aimjournals.com/index.php/ijmscit

and consumers may be running different code versions
simultaneously.

Without a strict, automated governance mechanism, an
incompatible schema change can instantly break dozens
of consuming microservices, leading to a catastrophic
cascading system failure. The established solution
involves the mandatory use of a Schema Registry—a
centralized store for schemas (typically using formats
like Avro or Protobuf due to their native support for
schema evolution rules). The Schema Registry acts as a
gatekeeper, enforcing compatibility rules upon producer
registration and ensuring consumers can retrieve the
correct schema for deserialization. This governance
layer is non-optional for production systems. The
complexity lies in defining organizational policies that
dictate which compatibility modes are permissible for
specific topics, balancing the need for producer agility
with consumer safety. For instance, topics serving as a
public "Stream of Record" for the entire enterprise often
mandate strict backward and forward compatibility,
severely limiting the types of permissible changes,
whereas internal, localized topics may allow for more
rapid, This distinction
highlights the need for a topic-level governance model
that reflects the business criticality and audience of the
data stream. Furthermore, the registry itself must be

less constrained evolution.

highly available and scalable, as it becomes a critical
path component for all producer and consumer
interactions. Failure of the Schema Registry is associated

with halting all new event production and consumption.

Comprehensive Observability in Event-Driven

Architectures

The asynchronous, fire-and-forget nature of Kafka-
based
observability, testing, and debugging. In a monolithic

communication significantly = complicates
application, a single request traverses a few function
calls within a single process; in a microservices EDA, a
single user action (e.g., placing an order) may trigger a
chain of five to ten events, processed asynchronously by
a dozen separate services across multiple networks.
Tracing the flow of execution and data is inherently
challenging, as the execution thread jumps from one

service to another via the decoupled Kafka broker.

A three-pronged approach to observability is mandatory
for distributed systems built on Kafka:

1.Distributed Tracing: Tools based on standards like
implementations like
pg. 104

OpenTelemetry or earlier

https://aimjournals.com/index.php/ijmscit

International Journal of Modern Computer Science and IT

Innovations (IJMCSIT)

Jaeger/Zipkin are essential. The trace context (a unique
identifier for the transaction) must be injected into the
Kafka message headers by the producer and extracted
by the consumer upon reading. This allows for the
visualization of the entire event flow across services,
identifying latency bottlenecks and points of failure,
which is impossible with traditional service-centric
metrics alone. The correlation ID, a unique identifier for
the initial user request, must persist across all events it
generates, allowing for the aggregation of all logs and
metrics related to that single business transaction. The
instrumentation effort required for this is significant,
demanding adherence to strict internal standards across
all polyglot microservices.

2.Correlated Logging: Log events generated by each
microservice must include the unique trace and span
identifiers from the distributed trace. This correlated
logging allows for a unified log aggregation system (like
the ELK stack or Splunk) to link all log entries associated
with a single business transaction, enabling a developer
to move seamlessly from a high-level trace view to the
specific application log messages that detail the event
Standardized

infrastructure

processing failure.

logging
prerequisites for effective correlation.

log formats and

centralized are necessary

3.Metrics
metrics (broker CPU, disk I/O, network throughput) must

and Monitoring: Standard operational
be augmented with critical application-level metrics.
These include consumer lag (the delay between the
latest event produced and the latest event processed by
a consumer group), message production/consumption
group
Consumer lag is the single most critical health metric for

rate, and consumer rebalance frequency.
an EDA, as a growing lag indicates a service is failing to
keep up with its data stream, leading to service
degradation and potential system-wide issues.
Comprehensive monitoring must encompass not only
the Kafka brokers but also the health and processing rate
of every consumer group, often visualized using tools
like Prometheus and Grafana. The monitoring must also
track the message flow through the Kafka Connect
framework for CDC and other integrations, ensuring the

end-to-end pipeline health is visible.

The operational overhead of implementing and
maintaining this level of observability is considerable,
but it constitutes a necessary investment to realize the

promised resilience of the microservices paradigm.

https://aimjournals.com/index.php/ijmscit

Failure to invest in these capabilities leads directly to the
"distributed monolith" anti-pattern—a system that has
all the complexity of microservices but none of the
operational benefits. The inability to rapidly diagnose
and isolate the root cause of an asynchronous failure is
associated with significantly extended Mean Time To
Recovery (MTTR) and increased operational cost.

Deployment and Orchestration in Cloud-Native

Environments

The success of Kafka in MSA is intimately tied to the rise
of cloud-native computing and container orchestration.
Deploying and managing a Kafka cluster—a stateful,
distributed system—is a non-trivial task. The current
state-of-the-art involves deploying Kafka on Kubernetes
(K8s), leveraging specialized operators, such as Strimzi,
to automate the complex lifecycle management:
deployment, scaling (adding or removing brokers),

configuration changes, and failure recovery.

The K8s operator pattern effectively encapsulates the
Kafka,
transforming the difficulty of managing a distributed

operational knowledge required to run
system into a managed configuration. This coupling of
Kafka and K8s is a major theme in modern architecture,
as it provides the elastic scalability and declarative
configuration management necessary for a robust
microservices infrastructure. However, this introduces
an additional layer of complexity: expertise in both
distributed streaming and cloud-native orchestration
becomes mandatory for the infrastructure team.
Organizations must also manage the complexity of
ensuring persistent storage for the Kafka logs within the
containerized environment, often utilizing persistent
volume claims and ensuring that the storage layer itself
offers sufficient /O performance to handle the required
throughput. The selection and tuning of the underlying
Java Virtual Machine (JVM) for Kafka brokers is also a
non-trivial tuning exercise, impacting both performance

and memory usage, requiring significant expertise.
4.3. Data Consistency and Transactional Integrity

The shift from monolithic applications with a single,
transactional database to decoupled microservices with
decentralized data necessitates a fundamental change
in how data consistency is managed. The primary model
in EDA is not ACID, but BASE (Basically Available, Soft
state, Eventual consistency).

e Eventual Consistency: In an eventually consistent

pg. 105

https://aimjournals.com/index.php/ijmscit

International Journal of Modern Computer Science and IT

Innovations (IJMCSIT)

system, data changes propagate through events,
meaning that while the data will eventually become
consistent across all services, there is a period of
time where different services may hold different,
potentially stale, views of the same business entity.
The Saga pattern manages this by ensuring all
eventual states are either the final successful state
or a fully compensated, neutral state. Architects
must design their services and business processes to
tolerate this temporary inconsistency. Business
users must also be educated on the implications of
eventual consistency,
facing applications where a brief delay in data
synchronization may be perceptible.

particularly in customer-

o Idempotency and Exactly-Once Semantics: Since
failures in a distributed system are inevitable,
message delivery guarantees become paramount.
Kafka offers At-Least-Once delivery by default,
meaning a message is guaranteed to be delivered
but is associated with the potential to be delivered
more than once in the event of a failure and retry.
For a microservice to maintain data integrity, it must
be idempotent, meaning processing the same event
multiple times yields the same result as processing
it once. This is often achieved by tracking the unique
event ID or by leveraging transactional producers
and consumers for a more robust form of Exactly-
Once Processing (EOP). EOP, which ensures a
message is
duplicates, is the gold standard for transactional
data (like payment processing) and is achieved
through the Kafka Transactional API. This API utilizes
two-phase commit protocols across the producer,

processed exactly once without

the Kafka broker, and the consumer's state store to
guarantee atomicity of the message consumption
and the resulting state update, which is critical for
complex stateful applications. The implementation
of EOP adds complexity but guarantees data safety
across the read-process-write loop.

4.4, Limitations and Future Research Directions

Despite its clear advantages, Kafka is not without
operational and architectural limitations. The platform
dedicated, skill
configuration, tuning, and monitoring, representing a

requires a specialized set for
significant upfront investment for organizations. The

debugging complexity in a distributed, asynchronous

https://aimjournals.com/index.php/ijmscit

environment remains higher than in traditional
architectures. Furthermore, the operational cost of
maintaining a high-availability, multi-broker cluster,
compounded by

connectors or management tools, can be substantial.

often licenses for specialized
The trade-off between the complexity of Kafka and the
business need for scale and decoupling must be carefully

evaluated before adoption.
Future research should focus on several emerging areas:

1. Comparative Platform Analysis: A
quantitative comparison of Kafka's performance and

rigorous,

operational overhead against newer distributed
streaming platforms, such as Apache Pulsar, which
proposes a unified messaging and storage model, to
determine the long-term optimal choice for specific
classes of microservices applications.

2. Al-Driven
advanced integration patterns for streaming data

Stream Analytics: Exploration of
from Kafka directly into Machine Learning (ML)
models for real-time inference and decision-making,
particularly in loT and financial services applications.
This requires low-latency feature extraction and
model serving directly from the stream.

3. Edge Computing Optimization: Investigation into
lightweight, resource-optimized configurations of
Kafka edge
environments, where network connectivity is

for deployment in computing

intermittent and computational resources are
constrained. This involves exploring low-footprint
alternatives and mesh network topologies.

4. Automated Governance: Research into tools and
frameworks that automate schema evolution
enforcement and automatically generate

observability instrumentation, further reducing the

manual operational overhead of maintaining a

large-scale EDA. This includes self-healing and self-

tuning Kafka clusters managed by autonomous

operators.

5. Security and Compliance: Detailed examination of
advanced security patterns within Kafka, specifically
the implementation of end-to-end encryption, fine-
grained Access Control Lists (ACLs), and data
masking techniques required to meet stringent
regulatory compliance standards such as GDPR or
HIPAA in a data
environment.

high-velocity streaming

pg. 106

https://aimjournals.com/index.php/ijmscit

International Journal of Modern Computer Science and IT

Innovations (IIMCSIT)

References

1.

B. R. Hiraman, C. Viresh M. and K. Abhijeet C., "A
Study of Apache Kafka in Big Data Stream
Processing," 2018 International Conference on
Information , Communication, Engineering and
Technology (ICICET), 2018, pp. 1-3, doi:
10.1109/ICICET.2018.8533771.

R. Shree, T. Choudhury, S. C. Gupta and P. Kumar,
"KAFKA: The modern platform for data
management and analysis in big data domain,"
2017 2nd International Conference on
Telecommunication and Networks (TEL-NET), 2017,
pp. 1-5, doi: 10.1109/TELNET.2017.8343593.

Kesarpu, S., & Hari Prasad Dasari. (2025). Kafka
Event Sourcing for Real-Time Risk Analysis.
International Journal of Computational and
Experimental Science and Engineering, 11(3).
https://doi.org/10.22399/ijcesen.3715

Shaheen, J. A.. “Apache Kafka: Real Time
Implementation with Kafka Architecture Review.”
International journal of advanced science and
technology 109 (2017): 35-42.

Dobbelaere, P., &Esmaili, K.S. (2017). Kafka versus
RabbitMQ. ArXiv, abs/1709.00333.

P. Le Noac'h, A. Costan and L. Bougé, "A
performance evaluation of Apache Kafka in support
of big data streaming applications," 2017 IEEE
International Conference on Big Data (Big Data),
2017, pp. 4803-4806, doi:
10.1109/BigData.2017.8258548.

B. Yadranjiaghdam, N. Pool and N. Tabrizi, "A
Survey on Real-Time Big Data Analytics:
Applications and Tools," 2016 International
Conference on Computational Science and
Computational Intelligence (CSCI), 2016, pp. 404-
409, doi: 10.1109/CSCI.2016.0083.

Singh, V. (2025). Securing Transactional Integrity:
Cybersecurity Practices in Fintech and Core
Banking. QTanalytics Publication (Books), 86—96.
https://doi.org/10.48001/978-81-980647-2-1-9

Sayyed, Z. (2025). Development of a Simulator to
Mimic VMware vCloud Director (VCD) API Calls for
Cloud Orchestration Testing. International Journal
of Computational and Experimental Science and
Engineering, 11(3).

https://aimjournals.com/index.php/ijmscit

https://doi.org/10.22399/ijcesen.3480

pg. 107

https://aimjournals.com/index.php/ijmscit
https://doi.org/10.22399/ijcesen.3715
https://doi.org/10.48001/978-81-980647-2-1-9
https://doi.org/10.22399/ijcesen.3480

