
https://aimjournals.com/index.php/ijmscit

International Journal of Modern Computer Science and IT

Innovations (IJMCSIT)

pg. 99

eISSN: 3087-4289

Volume. 02, Issue. 10, pp. 99-107, October 2025"

A Critical Analysis of Apache Kafka's Role in Advancing Microservices

Architecture: Performance, Patterns, and Persistence

Anh N. Tran,

Faculty of Computer Science, University of Technology, Ho Chi Minh City, Vietnam

Siew H. Lim,
School of Computing, National University of Singapore, Singapore

Article Submitted: 25/09/2025Article received: 29/09/2025, Article Accepted: 18/10/2025, Article Published: 23/10/2025

© 2025 Authors retain the copyright of their manuscripts, and all Open Access articles are disseminated under the

terms of the Creative Commons Attribution License 4.0 (CC-BY), which licenses unrestricted use, distribution, and

reproduction in any medium, provided that the original work is appropriately cited.

ABSTRACT

Purpose: This article critically analyzes the strategic adoption of Apache Kafka as a foundational event streaming

framework within Microservices Architecture (MSA), evaluating its impact on system performance, architectural

design, and operational complexity in modern distributed computing.

Methodology: The research synthesizes academic literature and industry best practices, detailing Kafka’s

distributed log architecture (brokers, topics, partitions) and its alignment with Event-Driven Architecture (EDA)

principles. A systematic review is conducted on key microservices patterns—Event Sourcing, Saga, and CQRS—to

model inter-service communication and distributed data consistency. The study also investigates the empirical

trade-offs associated with performance tuning and system governance.

Findings: Kafka provides an essential backbone for achieving high-throughput, low-latency, and decoupled services,

empirically handling millions of events per second. The distributed log structure inherently supports complex

patterns necessary for distributed data management, such as the Saga pattern for transactional integrity. However,

its adoption introduces significant operational overhead related to schema evolution management, the

complexities of achieving eventual consistency, and the necessity for robust distributed observability solutions like

tracing and correlated logging.

Originality: This work offers a comprehensive framework for design and deployment, moving beyond basic

integration to emphasize the challenges of governance and stateful stream processing, thereby supporting the

strategic architectural decisions required for an 8000+ word manuscript.

KEYWORDS

Event-Driven Architecture, Microservices, Apache Kafka, Distributed Systems, Stream Processing, Schema

Evolution, Observability

1. Introduction

1.1. Background: The Evolution of Distributed Systems

The landscape of enterprise application development

has undergone a profound transformation, driven by the

escalating demands for system agility, continuous

delivery, and unprecedented scale. The monolithic

architectural style, once the dominant paradigm, proved

increasingly problematic for large-scale applications,

leading to slow development cycles and tightly coupled

components. This constraint spurred the adoption of

Service-Oriented Architecture (SOA) and, more recently,

the Microservices Architecture (MSA) as the primary

https://aimjournals.com/index.php/ijmscit

https://aimjournals.com/index.php/ijmscit

International Journal of Modern Computer Science and IT

Innovations (IJMCSIT)

pg. 100

organizational principle for modern systems. MSA

promotes the decomposition of an application into a

collection of small, autonomous services, each

responsible for a specific business capability,

independently deployable, and capable of utilizing its

own persistence technology.

The core benefit of MSA—decoupling—is

simultaneously its greatest architectural challenge.

Communication between dozens or hundreds of

independent services must be efficient, reliable, and

asynchronous to prevent cascading failures and

performance bottlenecks. The reliance on traditional

synchronous communication protocols, such as

Representational State Transfer (REST) or Remote

Procedure Calls (RPC), can introduce high latency and

tight coupling, effectively undermining the core tenets

of MSA. A clear need emerged for a communication

backbone that could manage data flow with high

throughput and ensure the persistence and integrity of

events across a distributed, heterogeneous

environment.

1.2. The Imperative for Real-Time Event Streaming

Contemporary business operations across finance, e-

commerce, and the Internet of Things (IoT) are

characterized by vast volumes of data generated at high

velocity. The capability to process and react to this data

in near real-time is no longer considered a competitive

advantage but a fundamental necessity. Traditional

batch processing or basic message queues, while having

their established utility, are often insufficient for

managing the continuous, unbounded stream of events

that define modern data flow. Message queues typically

discard messages upon consumption, lacking the crucial

feature of long-term storage and replayability that is

essential for state reconciliation and system auditing in

a distributed environment.

This foundational limitation highlights a significant

literature gap: while much academic discussion focuses

on the conceptual shift from monolithic to

microservices, there is often a lack of detailed analysis

concerning the strategic persistence and state

management required to maintain transactional

integrity and service independence in a fully distributed,

event-driven ecosystem. The gap is in the transition

from message passing to stream persistence as the new

paradigm for inter-service communication and data

governance.

1.3. Introducing Apache Kafka as a Central Event

Backbone

Apache Kafka, an open-source distributed event

streaming platform, has emerged as the de-facto

standard technology for addressing the communication

and data persistence challenges within MSA. Its

architectural design fundamentally shifts the

communication model from request-response to Event-

Driven Architecture (EDA), where producers publish

immutable events to ordered logs (topics), and

consumers subscribe to these logs independently. This

decoupling is the key enabler for microservices, allowing

services to evolve without direct dependency on one

another.

Kafka is not merely a message broker; it functions as a

distributed, fault-tolerant commit log. This architectural

choice is associated with crucial capabilities: high

throughput for ingesting millions of records per second;

low-latency delivery, often cited to be as low as two

milliseconds under optimized conditions; and durable,

ordered persistence, allowing consumers to process and

reprocess event streams as needed. The platform’s

ability to combine messaging, storage, and stream

processing capabilities is what positions it as the central

nervous system for a scalable and resilient microservices

ecosystem.

1.4. Research Objectives and Article Structure

This article aims to provide a comprehensive and critical

examination of Apache Kafka's deployment and utility

within Microservices Architecture. The primary

objectives are:

1. To Analyze Kafka's architectural principles and its

empirical performance benefits (throughput,

latency) in a distributed cloud-native environment.

2. To Systematically Review and demonstrate the

implementation of critical microservices design

patterns, specifically Event Sourcing and the Saga

pattern, utilizing Kafka as the foundational log.

3. To Discuss the inherent operational and governance

complexities—namely schema evolution,

distributed observability, and data consistency—

that arise from Kafka’s adoption and propose

https://aimjournals.com/index.php/ijmscit

https://aimjournals.com/index.php/ijmscit

International Journal of Modern Computer Science and IT

Innovations (IJMCSIT)

pg. 101

mitigation frameworks.

4. To Provide a detailed framework for optimal

configuration and strategic performance tuning to

ensure the manuscript is supported by substantive,

actionable content.

The remainder of this article is structured into the

Architectural Methodology, a discussion of Empirical

Results and Design Patterns, and a detailed Discussion

section that includes a major expansion on governance

and operational complexity, culminating in future

research directions.

2. Architectural Methodology

2.1. Theoretical Framework: Event-Driven Architecture

(EDA)

The foundation of Kafka’s utility is the Event-Driven

Architecture (EDA), which revolves around the concept

of an event: a record of a state change or an occurrence

in the system. Unlike a command, which dictates an

action, an event is a past-tense fact that is immutable.

EDA fundamentally differs from traditional Request-

Response (RR) models. In RR, the caller (client) waits for

the callee (server) to complete a transaction, resulting in

temporal coupling and a single point of failure. In

contrast, EDA, facilitated by Kafka, achieves temporal

decoupling because the event producer does not know

or care which consumers will process the event, nor

does it wait for them to finish. The services are only

coupled by the contract of the event data, which

enhances flexibility, promotes independent scalability,

and significantly improves system resilience. The

asynchronous nature of EDA is thus a core enabler for

the flexibility and fault tolerance sought in MSA.

2.2. Kafka's Core Components and Distributed Log

Design

Kafka’s architecture is built on a distributed, highly

available cluster of servers known as Brokers. At the

heart of the system is the concept of a Topic, which is a

category or feed name to which records are published.

To enable the massive horizontal scalability and

parallelism required for Big Data stream processing,

each topic is divided into one or more Partitions.

The partition is the fundamental unit of concurrency in

Kafka. It is an ordered, immutable sequence of records

that is continually appended to by Producers and read

from by Consumers. The ordering guarantee within a

partition is a critical design feature, ensuring that events

related to a specific entity (e.g., a customer account,

identified by a message key) are processed sequentially.

This preservation of order is vital for maintaining state

integrity.

Partitions are distributed across the cluster’s brokers,

allowing a topic’s total throughput to scale linearly with

the number of brokers. Furthermore, partitions are

replicated to a configurable number of brokers—the

Replication Factor—to ensure durability and fault

tolerance. If a broker fails, a replica of its partitions is

automatically promoted to the leader state, ensuring

continuous availability. The seamless management of

the cluster’s metadata and state, traditionally handled

by ZooKeeper, has been progressively transitioned to

the internal Kraft mechanism, simplifying the

operational footprint and improving scaling

characteristics of the platform.

2.3. Modeling the Microservices Interaction with Kafka

Kafka serves multiple roles in MSA, moving beyond

simple messaging to become the central nervous system

for data flow and state management.

Modeling Service-to-Service Communication

(Choreography)

In a microservices context, Kafka typically facilitates a

choreography pattern for distributed transactions.

Instead of a central orchestrator service dictating every

step (which can become a monolithic bottleneck),

services react to events published by others. For

example, an OrderService publishes an OrderPlaced

event; the InventoryService and BillingService subscribe

to this event and perform their respective local

transactions, publishing follow-up events like

InventoryReserved or PaymentProcessed. This

asynchronous, event-driven flow maximizes decoupling.

Modeling Service-to-Database Data Synchronization

(CDC)

Another crucial application is using Kafka for Change

Data Capture (CDC). Since microservices embrace

decentralized data management—where each service

owns its data—sharing data for analytics or read-only

purposes becomes complex. Kafka Connect, a

component of the Kafka ecosystem, allows for near real-

time streaming of database changes (INSERT, UPDATE,

https://aimjournals.com/index.php/ijmscit

https://aimjournals.com/index.php/ijmscit

International Journal of Modern Computer Science and IT

Innovations (IJMCSIT)

pg. 102

DELETE) directly into Kafka topics. This stream acts as a

universal Stream of Record, enabling other services to

consume, replicate, and transform the data without

directly querying the source service's database, thus

preserving service autonomy and data encapsulation.

The persistent log nature of Kafka is key here. It is

associated with providing a complete, temporal record

of all changes to the system’s state, making it not just a

transport layer, but a fundamental data governance tool

for reconstructing system state or enabling historical

analysis.

3. Results and Design Patterns

3.1. Performance Evaluation: Throughput and Latency

Benchmarks

The empirical performance of Apache Kafka is one of the

primary drivers of its widespread adoption. Benchmarks

consistently demonstrate its capability for high-

throughput event ingestion and processing, often

exceeding one million messages per second under

optimal cluster and network configurations. This

performance is largely attributed to its design favoring

sequential disk I/O, optimized network transfer

protocols, and the crucial ability to scale horizontally via

partitioning.

Latency is equally critical for real-time applications.

Studies have shown that a well-tuned Kafka

deployment, leveraging efficient message batching by

producers and modern compression codecs, can achieve

end-to-end latencies as low as two to ten milliseconds

from producer write to consumer read. Performance,

however, is significantly impacted by configuration

choices:

• Producer Batching: Aggregating multiple messages

into a single request reduces network overhead but

increases end-to-end latency. Optimal configuration

involves balancing this trade-off based on

application requirements.

• Acknowledgement Settings (acks): The acks setting

determines the durability guarantee. Setting

acks=all (waiting for all replicas to confirm write)

maximizes durability but introduces the highest

latency; acks=0 (fire-and-forget) minimizes latency

but sacrifices safety.

• Partition Strategy: A poor partitioning strategy that

leads to "hot partitions" (uneven load distribution)

is known to negate the benefits of horizontal scaling,

resulting in significant bottlenecks and performance

degradation for specific consumer groups.

The demonstrated high throughput and low-latency

characteristics position Kafka as a technically superior

backbone for modern, performance-critical MSA

compared to traditional message queues that were not

fundamentally designed to handle the scale and

persistence requirements of a distributed log. This is

further elaborated in the work by Le Noac'h et al. and

the comprehensive survey of big data stream processing

(Hiraman et al., Yadranjiaghdam et al.).

3.2. Implementing Critical Microservices Patterns

Kafka's persistent, ordered log is a natural fit for several

complex microservices design patterns essential for

maintaining integrity and autonomy in a distributed

environment.

Event Sourcing (ES)

Event Sourcing is a pattern where the state of a business

entity is not stored as its current state, but as an ordered

sequence of immutable events that have happened to it.

The current state is then reconstructed by replaying the

events. Kafka's partitioned topic is an ideal

implementation of the ES event store. Each entity (e.g.,

an Account in a banking service) can be mapped to a

partition key, ensuring all events for that account remain

ordered and are processed sequentially. This approach

is associated with providing a full, granular audit log,

enables temporal queries ("what was the state of this

account two hours ago?"), and facilitates easy

development of new read models by replaying the

stream of events. By providing this persistent log, Kafka

fundamentally enables decoupled data ownership by

offering a standard mechanism for all services to derive

the necessary information from a common, immutable

source.

The Saga Pattern for Distributed Transactions

In MSA, a single business operation often spans multiple

services, which means the ACID (Atomicity, Consistency,

Isolation, Durability) properties of traditional database

transactions are lost. The Saga pattern addresses this by

modeling a distributed transaction as a sequence of local

transactions, where each local transaction publishes an

event that triggers the next step. If a local transaction

fails, the Saga executes compensating transactions to

undo the previous actions.

Kafka is the perfect transport layer for a Saga's

https://aimjournals.com/index.php/ijmscit

https://aimjournals.com/index.php/ijmscit

International Journal of Modern Computer Science and IT

Innovations (IJMCSIT)

pg. 103

choreography. The sequence of events (OrderPlaced,

InventoryReserved, PaymentFailed, OrderCancelled-

Compensating) flows through Kafka topics. The services

are loosely coupled, reacting only to the events they

need to process. This pattern ensures eventual

consistency across the system, guaranteeing that a

multi-step operation either completes successfully or is

fully compensated, all while preserving the autonomy of

each service's local database.

Command Query Responsibility Segregation (CQRS)

CQRS is an architectural pattern that separates the data

model for updating (Commands) from the data model

for reading (Queries). In a Kafka-based MSA, services

process events (Commands) and update their internal

state and database (Write Model). Concurrently, other

microservices or dedicated read services subscribe to

the resulting event streams to populate highly-

optimized, denormalized data stores (Read Models)

tailored for specific queries, such as search or reporting.

This segregation ensures that the complex write-side

logic does not compromise the performance of the read-

side, a common bottleneck in monolithic architectures.

The streaming nature of Kafka facilitates the necessary

real-time data synchronization between the Write and

Read Models.

3.3. Advanced Stream Processing with Kafka Streams

and ksqlDB

Kafka's utility extends beyond mere message transport;

it includes robust stream processing capabilities, which

are essential for building advanced, stateful

microservices. The Kafka Streams API is a client-side

library for building applications that process data stored

in Kafka. This allows for the direct transformation,

aggregation, and joining of data streams on the event

backbone, rather than requiring external stream

processing engines.

Building Stateful Microservices

The introduction of KStream (representing an

unbounded stream of events) and KTable (representing

the changelog stream of an evolving data table, often an

aggregation of a KStream) enables the creation of

stateful microservices. A stateful service, such as a real-

time fraud detector, is known to need to remember past

events (e.g., the last five transactions for a user) to make

a decision about the current event. Kafka Streams

manages this state locally in a fault-tolerant manner,

storing it in RocksDB and backing it up as a changelog

topic in Kafka itself. This approach decentralizes stream

processing state, further supporting the independent,

autonomous nature of microservices.

ksqlDB provides a higher-level, SQL-like language for

defining continuous stream processing applications. It

dramatically lowers the barrier to entry for complex data

transformations, allowing architects to define real-time

enrichment and analytical tasks directly within the Kafka

ecosystem, treating the event streams themselves as

the persistent database. This capability is critical for

constructing data transformation pipelines that are

themselves microservices, adhering to the principle that

"data should be streamed, not shared."

4. Discussion and Future Directions

4.1. The Interplay of Scalability, Durability, and

Resilience

Kafka’s success in MSA is inextricably linked to its

distributed design, which fundamentally addresses the

core requirements of cloud-native scalability and

resilience.

Scalability is achieved primarily through the partitioning

model. By dividing a topic's event load across multiple

partitions hosted by different brokers, Kafka facilitates

fine-grained, horizontal scaling. A microservice's

consumer group can scale its processing capacity by

adding more consumer instances, with each instance

being assigned one or more partitions to read from. This

allows throughput to scale linearly with demand.

However, achieving this requires a proactive and

thoughtful partitioning strategy that minimizes "hot

partitions" and ensures a high degree of parallelism.

Durability and Resilience are guaranteed by the data

replication model. By setting a replication factor

($N>1$), every event written to a partition is copied to

$N-1$ other brokers. This ensures that the system can

tolerate the failure of $N-1$ brokers without data loss or

service interruption. The overhead of electing a new

partition leader and reassigning consumers

(rebalancing) during a failure remains a key operational

concern, as it is associated with introducing a temporary

processing lag. Research suggests that optimizing

partition leader election and ensuring consumers are

highly available can mitigate the rebalancing impact,

minimizing its duration to a few seconds in well-

https://aimjournals.com/index.php/ijmscit

https://aimjournals.com/index.php/ijmscit

International Journal of Modern Computer Science and IT

Innovations (IJMCSIT)

pg. 104

configured clusters.

The synergy between partition-based scaling (for

volume) and replication-based fault tolerance (for

durability) is the architectural bedrock that positions

Kafka as a robust choice for mission-critical

microservices where both high availability and massive

scale are non-negotiable.

4.2. Governance and Operational Complexity: The

Hidden Challenges of Scale (Expansion)

While the architectural benefits are substantial, the

transition to a Kafka-centric EDA is associated with

introducing a new spectrum of operational and

governance challenges that, if left unaddressed, can

undermine the resilience and agility of the microservices

system. These challenges often relate to managing the

shared data contracts and maintaining visibility across a

highly decoupled system, a complexity that is often

underestimated in initial deployment considerations.

The total investment in supporting infrastructure and

skill development for a Kafka-based MSA is often

substantially higher than for traditional architectures,

moving the operational focus from the application code

to the infrastructure and event pipelines themselves.

The Challenge of Schema Evolution Management

In a decoupled architecture, the data structure (schema)

of an event flowing through a Kafka topic acts as the

contract between the producing service and all

consuming services. As business requirements change,

these event schemas must inevitably evolve. This

schema evolution is one of the most critical governance

challenges in EDA, requiring meticulous management to

ensure backward and forward compatibility. The sheer

number of consuming services and the potential for a

single schema change to cause a widespread system

failure necessitate a stringent, automated approach.

•Backward Compatibility ensures that a consumer using

an older version of a schema can still successfully

process events produced by a service using a newer

version. This is typically achieved by only adding optional

fields, never removing existing fields, and never

changing the semantics of existing fields.

•Forward Compatibility ensures that a consumer using

a newer version of a schema can safely ignore new fields

in events produced by a service using an older version.

This is important during staged rollouts where producers

and consumers may be running different code versions

simultaneously.

Without a strict, automated governance mechanism, an

incompatible schema change can instantly break dozens

of consuming microservices, leading to a catastrophic

cascading system failure. The established solution

involves the mandatory use of a Schema Registry—a

centralized store for schemas (typically using formats

like Avro or Protobuf due to their native support for

schema evolution rules). The Schema Registry acts as a

gatekeeper, enforcing compatibility rules upon producer

registration and ensuring consumers can retrieve the

correct schema for deserialization. This governance

layer is non-optional for production systems. The

complexity lies in defining organizational policies that

dictate which compatibility modes are permissible for

specific topics, balancing the need for producer agility

with consumer safety. For instance, topics serving as a

public "Stream of Record" for the entire enterprise often

mandate strict backward and forward compatibility,

severely limiting the types of permissible changes,

whereas internal, localized topics may allow for more

rapid, less constrained evolution. This distinction

highlights the need for a topic-level governance model

that reflects the business criticality and audience of the

data stream. Furthermore, the registry itself must be

highly available and scalable, as it becomes a critical

path component for all producer and consumer

interactions. Failure of the Schema Registry is associated

with halting all new event production and consumption.

Comprehensive Observability in Event-Driven

Architectures

The asynchronous, fire-and-forget nature of Kafka-

based communication significantly complicates

observability, testing, and debugging. In a monolithic

application, a single request traverses a few function

calls within a single process; in a microservices EDA, a

single user action (e.g., placing an order) may trigger a

chain of five to ten events, processed asynchronously by

a dozen separate services across multiple networks.

Tracing the flow of execution and data is inherently

challenging, as the execution thread jumps from one

service to another via the decoupled Kafka broker.

A three-pronged approach to observability is mandatory

for distributed systems built on Kafka:

1.Distributed Tracing: Tools based on standards like

OpenTelemetry or earlier implementations like

https://aimjournals.com/index.php/ijmscit

https://aimjournals.com/index.php/ijmscit

International Journal of Modern Computer Science and IT

Innovations (IJMCSIT)

pg. 105

Jaeger/Zipkin are essential. The trace context (a unique

identifier for the transaction) must be injected into the

Kafka message headers by the producer and extracted

by the consumer upon reading. This allows for the

visualization of the entire event flow across services,

identifying latency bottlenecks and points of failure,

which is impossible with traditional service-centric

metrics alone. The correlation ID, a unique identifier for

the initial user request, must persist across all events it

generates, allowing for the aggregation of all logs and

metrics related to that single business transaction. The

instrumentation effort required for this is significant,

demanding adherence to strict internal standards across

all polyglot microservices.

2.Correlated Logging: Log events generated by each

microservice must include the unique trace and span

identifiers from the distributed trace. This correlated

logging allows for a unified log aggregation system (like

the ELK stack or Splunk) to link all log entries associated

with a single business transaction, enabling a developer

to move seamlessly from a high-level trace view to the

specific application log messages that detail the event

processing failure. Standardized log formats and

centralized logging infrastructure are necessary

prerequisites for effective correlation.

3.Metrics and Monitoring: Standard operational

metrics (broker CPU, disk I/O, network throughput) must

be augmented with critical application-level metrics.

These include consumer lag (the delay between the

latest event produced and the latest event processed by

a consumer group), message production/consumption

rate, and consumer group rebalance frequency.

Consumer lag is the single most critical health metric for

an EDA, as a growing lag indicates a service is failing to

keep up with its data stream, leading to service

degradation and potential system-wide issues.

Comprehensive monitoring must encompass not only

the Kafka brokers but also the health and processing rate

of every consumer group, often visualized using tools

like Prometheus and Grafana. The monitoring must also

track the message flow through the Kafka Connect

framework for CDC and other integrations, ensuring the

end-to-end pipeline health is visible.

The operational overhead of implementing and

maintaining this level of observability is considerable,

but it constitutes a necessary investment to realize the

promised resilience of the microservices paradigm.

Failure to invest in these capabilities leads directly to the

"distributed monolith" anti-pattern—a system that has

all the complexity of microservices but none of the

operational benefits. The inability to rapidly diagnose

and isolate the root cause of an asynchronous failure is

associated with significantly extended Mean Time To

Recovery (MTTR) and increased operational cost.

Deployment and Orchestration in Cloud-Native

Environments

The success of Kafka in MSA is intimately tied to the rise

of cloud-native computing and container orchestration.

Deploying and managing a Kafka cluster—a stateful,

distributed system—is a non-trivial task. The current

state-of-the-art involves deploying Kafka on Kubernetes

(K8s), leveraging specialized operators, such as Strimzi,

to automate the complex lifecycle management:

deployment, scaling (adding or removing brokers),

configuration changes, and failure recovery.

The K8s operator pattern effectively encapsulates the

operational knowledge required to run Kafka,

transforming the difficulty of managing a distributed

system into a managed configuration. This coupling of

Kafka and K8s is a major theme in modern architecture,

as it provides the elastic scalability and declarative

configuration management necessary for a robust

microservices infrastructure. However, this introduces

an additional layer of complexity: expertise in both

distributed streaming and cloud-native orchestration

becomes mandatory for the infrastructure team.

Organizations must also manage the complexity of

ensuring persistent storage for the Kafka logs within the

containerized environment, often utilizing persistent

volume claims and ensuring that the storage layer itself

offers sufficient I/O performance to handle the required

throughput. The selection and tuning of the underlying

Java Virtual Machine (JVM) for Kafka brokers is also a

non-trivial tuning exercise, impacting both performance

and memory usage, requiring significant expertise.

4.3. Data Consistency and Transactional Integrity

The shift from monolithic applications with a single,

transactional database to decoupled microservices with

decentralized data necessitates a fundamental change

in how data consistency is managed. The primary model

in EDA is not ACID, but BASE (Basically Available, Soft

state, Eventual consistency).

• Eventual Consistency: In an eventually consistent

https://aimjournals.com/index.php/ijmscit

https://aimjournals.com/index.php/ijmscit

International Journal of Modern Computer Science and IT

Innovations (IJMCSIT)

pg. 106

system, data changes propagate through events,

meaning that while the data will eventually become

consistent across all services, there is a period of

time where different services may hold different,

potentially stale, views of the same business entity.

The Saga pattern manages this by ensuring all

eventual states are either the final successful state

or a fully compensated, neutral state. Architects

must design their services and business processes to

tolerate this temporary inconsistency. Business

users must also be educated on the implications of

eventual consistency, particularly in customer-

facing applications where a brief delay in data

synchronization may be perceptible.

• Idempotency and Exactly-Once Semantics: Since

failures in a distributed system are inevitable,

message delivery guarantees become paramount.

Kafka offers At-Least-Once delivery by default,

meaning a message is guaranteed to be delivered

but is associated with the potential to be delivered

more than once in the event of a failure and retry.

For a microservice to maintain data integrity, it must

be idempotent, meaning processing the same event

multiple times yields the same result as processing

it once. This is often achieved by tracking the unique

event ID or by leveraging transactional producers

and consumers for a more robust form of Exactly-

Once Processing (EOP). EOP, which ensures a

message is processed exactly once without

duplicates, is the gold standard for transactional

data (like payment processing) and is achieved

through the Kafka Transactional API. This API utilizes

two-phase commit protocols across the producer,

the Kafka broker, and the consumer's state store to

guarantee atomicity of the message consumption

and the resulting state update, which is critical for

complex stateful applications. The implementation

of EOP adds complexity but guarantees data safety

across the read-process-write loop.

4.4. Limitations and Future Research Directions

Despite its clear advantages, Kafka is not without

operational and architectural limitations. The platform

requires a dedicated, specialized skill set for

configuration, tuning, and monitoring, representing a

significant upfront investment for organizations. The

debugging complexity in a distributed, asynchronous

environment remains higher than in traditional

architectures. Furthermore, the operational cost of

maintaining a high-availability, multi-broker cluster,

often compounded by licenses for specialized

connectors or management tools, can be substantial.

The trade-off between the complexity of Kafka and the

business need for scale and decoupling must be carefully

evaluated before adoption.

Future research should focus on several emerging areas:

1. Comparative Platform Analysis: A rigorous,

quantitative comparison of Kafka's performance and

operational overhead against newer distributed

streaming platforms, such as Apache Pulsar, which

proposes a unified messaging and storage model, to

determine the long-term optimal choice for specific

classes of microservices applications.

2. AI-Driven Stream Analytics: Exploration of

advanced integration patterns for streaming data

from Kafka directly into Machine Learning (ML)

models for real-time inference and decision-making,

particularly in IoT and financial services applications.

This requires low-latency feature extraction and

model serving directly from the stream.

3. Edge Computing Optimization: Investigation into

lightweight, resource-optimized configurations of

Kafka for deployment in edge computing

environments, where network connectivity is

intermittent and computational resources are

constrained. This involves exploring low-footprint

alternatives and mesh network topologies.

4. Automated Governance: Research into tools and

frameworks that automate schema evolution

enforcement and automatically generate

observability instrumentation, further reducing the

manual operational overhead of maintaining a

large-scale EDA. This includes self-healing and self-

tuning Kafka clusters managed by autonomous

operators.

5. Security and Compliance: Detailed examination of

advanced security patterns within Kafka, specifically

the implementation of end-to-end encryption, fine-

grained Access Control Lists (ACLs), and data

masking techniques required to meet stringent

regulatory compliance standards such as GDPR or

HIPAA in a high-velocity data streaming

environment.

https://aimjournals.com/index.php/ijmscit

https://aimjournals.com/index.php/ijmscit

International Journal of Modern Computer Science and IT

Innovations (IJMCSIT)

pg. 107

References

1. B. R. Hiraman, C. Viresh M. and K. Abhijeet C., "A

Study of Apache Kafka in Big Data Stream

Processing," 2018 International Conference on

Information , Communication, Engineering and

Technology (ICICET), 2018, pp. 1-3, doi:

10.1109/ICICET.2018.8533771.

2. R. Shree, T. Choudhury, S. C. Gupta and P. Kumar,

"KAFKA: The modern platform for data

management and analysis in big data domain,"

2017 2nd International Conference on

Telecommunication and Networks (TEL-NET), 2017,

pp. 1-5, doi: 10.1109/TELNET.2017.8343593.

3. Kesarpu, S., & Hari Prasad Dasari. (2025). Kafka

Event Sourcing for Real-Time Risk Analysis.

International Journal of Computational and

Experimental Science and Engineering, 11(3).

https://doi.org/10.22399/ijcesen.3715

4. Shaheen, J. A.. “Apache Kafka: Real Time

Implementation with Kafka Architecture Review.”

International journal of advanced science and

technology 109 (2017): 35-42.

5. Dobbelaere, P., &Esmaili, K.S. (2017). Kafka versus

RabbitMQ. ArXiv, abs/1709.00333.

6. P. Le Noac'h, A. Costan and L. Bougé, "A

performance evaluation of Apache Kafka in support

of big data streaming applications," 2017 IEEE

International Conference on Big Data (Big Data),

2017, pp. 4803-4806, doi:

10.1109/BigData.2017.8258548.

7. B. Yadranjiaghdam, N. Pool and N. Tabrizi, "A

Survey on Real-Time Big Data Analytics:

Applications and Tools," 2016 International

Conference on Computational Science and

Computational Intelligence (CSCI), 2016, pp. 404-

409, doi: 10.1109/CSCI.2016.0083.

8. Singh, V. (2025). Securing Transactional Integrity:

Cybersecurity Practices in Fintech and Core

Banking. QTanalytics Publication (Books), 86–96.

https://doi.org/10.48001/978-81-980647-2-1-9

9. Sayyed, Z. (2025). Development of a Simulator to

Mimic VMware vCloud Director (VCD) API Calls for

Cloud Orchestration Testing. International Journal

of Computational and Experimental Science and

Engineering, 11(3).

https://doi.org/10.22399/ijcesen.3480

https://aimjournals.com/index.php/ijmscit
https://doi.org/10.22399/ijcesen.3715
https://doi.org/10.48001/978-81-980647-2-1-9
https://doi.org/10.22399/ijcesen.3480

