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ABSTRACT 

 

Background: PostgreSQL and MySQL are the world's leading open-source relational database management systems 

(RDBMS), yet the choice between them remains a critical and complex decision for system architects. While 

historical benchmarks exist, the continuous evolution of both systems necessitates an updated, rigorous performance 

evaluation that reflects modern hardware and diverse application workloads. 

Methods: This study conducts a comprehensive benchmark analysis of the latest stable versions, PostgreSQL 16 and 

MySQL 8.0, on a dedicated, high-performance physical server. Using a composite benchmarking approach, we 

evaluated performance across three distinct, industry-standard workload profiles: a simple, high-concurrency Online 

Transaction Processing (OLTP) workload using SysBench; a complex, multi-table OLTP workload using the TPC-

C benchmark; and a decision-support, Online Analytical Processing (OLAP) workload using the 22 queries of the 

TPC-H benchmark. Key performance metrics, including throughput (TPS), 95th percentile latency, and query 

execution time, were systematically collected. 

Results: Our findings reveal a distinct performance dichotomy. MySQL demonstrated superior throughput and lower 

latency in simple OLTP scenarios, achieving up to 21% higher peak TPS than PostgreSQL under moderate 

concurrency. However, its performance degraded under heavy client load. Conversely, PostgreSQL exhibited greater 

stability and scalability, outperforming MySQL by 14% in the complex TPC-C workload. In the analytical TPC-H 

benchmark, PostgreSQL showed a profound advantage, completing the full query suite in less than one-third of the 

time required by MySQL, highlighting its superior query optimizer and execution engine for complex analytical 

tasks. 

Conclusion: The optimal database choice is fundamentally workload-dependent. MySQL is highly proficient for 

applications dominated by simple, high-volume read/write operations. PostgreSQL is the more robust and versatile 

choice for applications with complex transactional logic, mixed transactional and analytical requirements, and the 

need for predictable performance under high contention. These findings provide empirical guidance for architects to 

align database selection with specific application performance profiles. 

 

Keywords: Database Performance, Benchmarking, PostgreSQL, MySQL, OLTP, OLAP, Concurrency Control. 

 

INTRODUCTION  

1.1. The Centrality of Data Management in Modern 

Computing 

In the contemporary digital landscape, data has 

unequivocally emerged as the most critical asset for 

enterprises, research institutions, and governmental 

bodies alike. The exponential growth in data generation, 

fueled by the proliferation of IoT devices, social media, 

and digital services, has placed unprecedented demands 

on the underlying systems responsible for its storage, 

retrieval, and management. The performance, reliability, 

and scalability of database management systems 

(DBMS) are no longer mere technical considerations but 
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are fundamental pillars supporting everything from e-

commerce platforms and financial trading systems to 

scientific research and global logistics. An inefficient 

database can create performance bottlenecks that cascade 

through an entire application stack, leading to poor user 

experience, lost revenue, and compromised operational 

integrity. Consequently, the selection of an appropriate 

DBMS is one of the most consequential architectural 

decisions in software engineering. This decision 

necessitates a profound understanding of not only the 

features of a given system but, more critically, its 

performance characteristics under workloads that mirror 

real-world use cases. 

1.2. The Enduring Dominance of the Relational Model 

Despite the rise of alternative data models, collectively 

known as NoSQL, the relational database management 

system (RDBMS) remains the bedrock of a vast majority 

of applications, particularly those requiring strong 

transactional guarantees, data consistency, and the 

flexibility of a structured query language (SQL). The 

principles of atomicity, consistency, isolation, and 

durability (ACID) provide a robust framework for 

managing critical data, ensuring that transactions are 

processed reliably. For decades, the relational model has 

proven its resilience and adaptability, evolving to meet 

new challenges in scale and complexity. 

Within the RDBMS ecosystem, two open-source systems 

have achieved unparalleled prominence: PostgreSQL and 

MySQL. Their widespread adoption is attributable to 

their maturity, extensive feature sets, vibrant community 

support, and, crucially, their royalty-free licensing 

model, which has democratized access to enterprise-

grade database technology. MySQL, historically lauded 

for its simplicity, high speed on read-heavy workloads, 

and ease of use, became the de facto standard for web 

applications, famously forming the 'M' in the LAMP 

(Linux, Apache, MySQL, PHP) stack. Conversely, 

PostgreSQL has cultivated a reputation for its strict 

adherence to SQL standards, extensibility, and advanced 

features that support complex queries and high-integrity 

transactional environments. 

1.3. The Rationale for a Renewed Performance 

Benchmark 

The longstanding debate over the relative performance of 

PostgreSQL and MySQL is well-documented. However, 

the database landscape is in a state of perpetual evolution. 

Both PostgreSQL and MySQL have undergone 

significant architectural enhancements in recent years. 

PostgreSQL 16 brings improvements in query 

parallelism and logical replication, while MySQL 8.0 

introduced transactional data dictionaries and enhanced 

JSON support, among other features. This continuous 

development cycle means that performance benchmarks 

conducted on older versions may no longer accurately 

reflect the capabilities of the current-generation systems. 

Furthermore, early comparisons often focused on 

simplistic or narrow workloads, which failed to capture 

the nuanced behavior of these systems under diverse 

operational demands. Modern applications rarely present 

a monolithic workload; they typically involve a mix of 

short, high-frequency transactions—characteristic of 

Online Transaction Processing (OLTP)—and long-

running, complex queries for analytics and reporting, 

which define Online Analytical Processing (OLAP). A 

critical gap in the existing literature is the lack of a 

comprehensive, contemporary benchmark that evaluates 

the latest stable releases of both databases across this full 

spectrum of standardized OLTP and OLAP workloads on 

modern, multi-core hardware. Previous studies have 

often compared one system against a NoSQL alternative 

or different versions of the same system, but a direct, 

multi-faceted comparison on current versions is less 

common. 

This study aims to address this gap by conducting a 

rigorous, empirical performance analysis of PostgreSQL 

16 and MySQL 8.0. We move beyond simplistic metrics 

to provide a multi-dimensional view of performance, 

recognizing that the "better" database is not an absolute 

but is highly contingent on the specific application 

workload. 

1.4. Research Objectives and Structure 

The primary objective of this research is to provide a 

clear, data-driven comparison of PostgreSQL and 

MySQL performance to guide architects, developers, and 

database administrators in their technology selection 

process. To achieve this, we formulate the following 

research questions: 

1. How do PostgreSQL 16 and MySQL 8.0 

compare in terms of throughput and latency for high-

concurrency OLTP workloads characterized by simple 

read/write operations? 

2. What is the performance differential between the 

two systems when subjected to complex OLAP 

workloads involving large table joins, aggregations, and 

analytical functions? 

3. How does each database scale as the number of 

concurrent client connections increases, and what 

architectural factors explain the observed scaling 

behavior? 

4. To what extent does fundamental system tuning 

impact the performance outcomes, and what are the key 

configuration parameters for each system? 

To answer these questions, this paper is structured 

according to the IMRaD format. Section 2 (Materials and 
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Methods) details the hardware and software environment, 

the standardized benchmarking tools and workloads 

(SysBench, TPC-C, TPC-H), and the experimental 

procedure. Section 3 (Results) presents the empirical data 

gathered from the benchmarks in a neutral, objective 

manner, utilizing tables and figures to illustrate 

performance metrics. Section 4 (Discussion) provides an 

in-depth interpretation of these results, linking them to 

the core architectural differences between PostgreSQL 

and MySQL, such as their concurrency control 

mechanisms. This section also discusses the practical 

implications of our findings, acknowledges the 

limitations of the study, and suggests avenues for future 

research. Finally, Section 5 (Conclusion) summarizes the 

key contributions of this work. 

2. Materials and Methods 

To ensure the validity, reliability, and reproducibility of 

our findings, a meticulously designed experimental 

methodology was employed. This section describes the 

hardware and software environment, the specific 

benchmarking suites and workloads used, the 

performance metrics collected, and the procedural steps 

followed during the benchmark execution. 

2.1. Experimental Environment and Testbed 

Configuration 

All benchmarks were executed on a dedicated physical 

server to eliminate performance variability associated 

with multi-tenant cloud environments. The use of 

virtualization and containerization technologies was 

crucial for ensuring process isolation and creating a 

clean, repeatable test environment for each database 

system. 

● Hardware Specifications: 

○ CPU: Dual Intel Xeon Gold 6248R (24 Cores / 

48 Threads @ 3.00 GHz each, for a total of 48 cores / 96 

threads) 

○ Memory (RAM): 512 GB DDR4 2933MHz ECC 

○ Storage: 4 x 2 TB NVMe SSD in a RAID 10 

configuration for a balance of performance and 

redundancy. This setup provides high I/O operations per 

second (IOPS) and low latency, critical for database 

benchmarking. 

○ Networking: 10 GbE Mellanox ConnectX-4 Lx 

EN 

● Virtualization and Containerization: 

○ Host Operating System: Ubuntu Server 22.04.3 

LTS. 

○ Virtualization Layer: The Xen hypervisor was 

used to create two identical virtual machines (VMs), one 

for PostgreSQL and one for MySQL. This ensures strict 

resource isolation between the database under test and the 

benchmark client. Each VM was allocated 32 vCPUs, 

128 GB of RAM, and direct pass-through access to a 1 

TB logical volume on the NVMe RAID array. 

○ Containerization: The database instances 

(PostgreSQL and MySQL) were run within Docker 

containers managed by Kubernetes. This approach 

facilitates rapid deployment, configuration management, 

and environment teardown/reset between test runs, 

guaranteeing an identical starting state for every 

experiment. The benchmark client tools were run from a 

separate pod within the same Kubernetes cluster to 

minimize network latency. 

2.2. Database Software and Configuration 

The latest stable, general-availability versions of both 

databases at the time of the study were used. Both 

systems were installed from their official Docker images. 

● PostgreSQL: 

○ Version: 16.0 

○ Configuration: The default postgresql.conf file 

was used as a baseline and then tuned for the allocated 

resources. Key parameters modified from their defaults 

included: 

■ shared_buffers = 32GB (25% of VM RAM, a 

standard recommendation) 

■ effective_cache_size = 96GB (75% of VM 

RAM) 

■ maintenance_work_mem = 2GB 

■ work_mem = 256MB 

■ wal_buffers = 16MB 

■ checkpoint_completion_target = 0.9 

■ max_connections = 500 

● MySQL: 

○ Version: 8.0.34 

○ Storage Engine: InnoDB (the default 

transactional engine) 

○ Configuration: Similar to PostgreSQL, the 

my.cnf file was tuned to leverage the available system 

resources. Key modifications included: 

■ innodb_buffer_pool_size = 96GB 
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(Approximately 75% of VM RAM, as InnoDB manages 

more than just disk block caching) 

■ innodb_log_file_size = 2GB 

■ innodb_flush_log_at_trx_commit = 1 (For full 

ACID compliance) 

■ innodb_io_capacity = 20000 (Tuned for NVMe 

SSDs) 

■ innodb_io_capacity_max = 40000 

■ max_connections = 500 

The importance of this tuning step cannot be overstated. 

Running benchmarks on default, out-of-the-box 

configurations would not reflect real-world deployment 

practices and would produce results skewed by 

conservative default settings. Our tuning aimed to 

provide each database with sufficient resources to 

perform optimally without being overly aggressive, 

which could introduce instability. 

2.3. Benchmarking Tools and Workloads 

A composite benchmarking approach was adopted, using 

multiple industry-standard tools to assess performance 

across different workload profiles. 

● SysBench (for OLTP): SysBench is a modular, 

scriptable, and multi-threaded benchmark tool. It is 

widely used for evaluating CPU, memory, and I/O 

performance, but its most valuable module is for database 

benchmarking. We utilized the oltp_read_write script, 

which simulates a simple transactional workload. This 

test involves a mix of point selects, range scans, updates, 

deletes, and inserts on a single table. It is an excellent 

measure of raw transactional throughput for simple, high-

concurrency operations. 

○ Dataset Size: A dataset of 10 tables, each with 20 

million rows, was generated, resulting in a total database 

size of approximately 50 GB, ensuring the dataset was 

significantly larger than the allocated RAM to test I/O 

performance. 

○ Test Parameters: The benchmark was run for a 

duration of 30 minutes for each concurrency level, with a 

5-minute warm-up period that was discarded from the 

results. Thread counts were varied from 1, 8, 16, 32, 64, 

128, to 256. 

● TPC-C (via Bench-Kit) (for complex OLTP): 

The Transaction Processing Performance Council's TPC-

C benchmark is an industry standard for measuring the 

performance of OLTP systems. It simulates a more 

complex workload than SysBench, modeling a wholesale 

supplier managing orders. It involves a mix of five 

concurrent transactions of varying complexity and types: 

New-Order, Payment, Order-Status, Delivery, and Stock-

Level. This benchmark is more representative of real-

world enterprise applications with multiple tables, 

foreign key constraints, and more complex transaction 

logic. 

○ Dataset Size: The benchmark was scaled to 1,000 

warehouses, resulting in a database size of approximately 

100 GB. 

○ Metric: The primary metric for TPC-C is 

transactions per minute (tpmC), though for this 

comparative study, we report it as transactions per second 

(TPS). 

● TPC-H (via pg_bench-tools) (for OLAP): The 

TPC-H benchmark is an industry standard for decision 

support and analytical systems. It consists of a suite of 

business-oriented ad-hoc queries and concurrent data 

modifications. The queries are complex, involving large 

table joins, aggregations, subqueries, and group-by 

operations. TPC-H is designed to measure the ability of a 

database to process large volumes of data and execute 

complex analytical tasks. 

○ Dataset Size: A scale factor of 100 (SF100) was 

used, generating a dataset of approximately 100 GB. 

○ Procedure: All 22 of the standard TPC-H queries 

were executed sequentially three times against each 

database. The client tool measured the execution time for 

each query. 

2.4. Performance Metrics and Data Collection 

The following key performance indicators (KPIs) were 

collected during the benchmark runs: 

● Throughput: Measured as Transactions Per 

Second (TPS) for OLTP workloads and Queries Per 

Second (QPS) for read-only workloads. This metric 

indicates the total number of requests a system can handle 

in a given time frame. 

● Latency: The time taken to complete a single 

transaction or query. We focused on the 95th percentile 

latency (p95), which is a more robust indicator of user-

perceived performance than the average, as it filters out 

extreme outliers while still capturing the typical worst-

case experience. 

● CPU Utilization: Monitored on the database 

server VM to understand the computational efficiency of 

each system. High throughput with low CPU utilization 

indicates better efficiency. 

● Query Execution Time (for TPC-H): The wall-

clock time required to complete each of the 22 analytical 

queries. 
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Data was collected using a combination of the output 

from the benchmark tools themselves and system 

monitoring tools like dstat and iostat on the host OS to 

capture CPU, memory, and I/O statistics. 

3. Results 

This section presents the empirical results obtained from 

the series of benchmarks described in the previous 

section. The data is presented objectively, with 

interpretation reserved for the Discussion section. The 

results are organized by the type of workload: simple 

OLTP, complex OLTP, and OLAP. 

3.1. OLTP Performance: SysBench oltp_read_write 

The SysBench oltp_read_write test was designed to 

measure the raw throughput and latency of each database 

under a high-concurrency transactional workload. 

3.1.1. Throughput (Transactions Per Second) 

The results for transactional throughput are summarized 

in Figure 1. At lower concurrency levels (1 to 32 threads), 

MySQL demonstrated a distinct performance advantage, 

achieving a peak throughput of approximately 42,500 

TPS at 64 threads. PostgreSQL's throughput scaled more 

linearly, starting lower but continuing to increase steadily 

up to 128 threads, reaching a peak of around 35,000 TPS. 

Beyond 64 threads, MySQL's performance began to 

plateau and then slightly decline at 256 threads, 

indicating contention issues. In contrast, PostgreSQL's 

performance remained stable at its peak from 128 to 256 

threads. 

 

Figure 1. Transactional Throughput under the SysBench oltp_read_write Workload. The chart illustrates the number 

of transactions per second (TPS) achieved by PostgreSQL 16 and MySQL 8.0 as the number of concurrent client 

threads increases from 1 to 256. 

3.1.2. Latency (95th Percentile) 

Latency provides a measure of responsiveness. Figure 2 shows the 95th percentile latency for transactions. MySQL 

maintained a lower latency up to the 64-thread mark, consistent with its higher throughput. However, as concurrency 

increased beyond this point, its latency began to climb sharply. PostgreSQL, while having a slightly higher baseline 

latency, exhibited a much more stable and predictable latency profile as the number of concurrent threads increased, 

showing only a modest increase even at 256 threads. This suggests that while MySQL is faster under moderate load, 

PostgreSQL provides more consistent performance under very high contention. 
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Figure 2. 95th Percentile Transaction Latency under the SysBench oltp_read_write Workload. The chart displays the 

p95 latency in milliseconds (ms) for PostgreSQL 16 and MySQL 8.0 as concurrent client threads increase. 

3.2. Complex Transactional Performance: TPC-C 

Workload 

The TPC-C benchmark simulates a more realistic and 

complex OLTP environment. The results, shown in Table 

1, reveal a different performance dynamic. 

Table 1. TPC-C Performance Summary (1000 Warehouses, 128 Concurrent Users). 

Metric PostgreSQL 16 MySQL 8.0 

Throughput (TPS) 1,850 1,620 

95th Percentile Latency (ms) 45.2 58.9 

CPU Utilization (%) 75% 88% 

In this more complex workload, which involves five 

different transaction types and enforces referential 

integrity across multiple tables, PostgreSQL showed 

superior performance. It achieved approximately 14% 

higher throughput than MySQL while maintaining a 

significantly lower 95th percentile latency. Furthermore, 

it accomplished this with lower overall CPU utilization, 

suggesting greater efficiency in executing these complex 

transactions. 

3.3. Analytical Query Performance: TPC-H 

Workload 

The TPC-H benchmark was used to evaluate the 

performance on complex, analytical (OLAP) queries. 

The total time taken to complete all 22 queries for the 

SF100 dataset is presented in Figure 3. 
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Figure 3. Total Execution Time for TPC-H Analytical Workload (SF100). This chart compares the total time in 

seconds for PostgreSQL 16 and MySQL 8.0 to complete the full suite of 22 TPC-H queries. 

 

PostgreSQL demonstrated a profound performance 

advantage in the OLAP workload, completing the full 

suite of 22 queries in approximately one-third of the time 

it took MySQL. The total execution time for PostgreSQL 

was 1,245 seconds, compared to 3,890 seconds for 

MySQL. 

A breakdown of individual query times revealed that 

PostgreSQL's advantage was particularly pronounced on 

queries involving complex joins, subqueries, and large 

aggregations (e.g., Q9, Q17, Q18). MySQL struggled 

with these operations, with some queries taking several 

minutes longer to execute than on PostgreSQL. This 

result strongly indicates that PostgreSQL's query planner 

and execution engine are significantly more optimized 

for complex, decision-support-style queries than 

MySQL's. 

3.4. Concurrency Scaling and Efficiency 

The CPU utilization data collected during the SysBench 

tests provides insight into the efficiency of each database. 

At 128 threads, where PostgreSQL's throughput was 

stable and MySQL's was beginning to show stress, 

PostgreSQL's CPU utilization was around 85%, while 

MySQL's was close to 95% saturation. This suggests that 

MySQL was hitting a resource contention bottleneck, 

likely related to its locking mechanisms, while 

PostgreSQL still had some headroom, a behavior 

consistent with its more efficient concurrency control 

model. 

4. Discussion 

The results presented in the previous section provide a 

quantitative foundation for a qualitative discussion of the 

performance characteristics of PostgreSQL 16 and 

MySQL 8.0. A simple declaration of one database being 

"better" than the other would be a gross 

oversimplification. Instead, the data clearly supports one 

of our core hypotheses: the optimal choice is 

fundamentally dependent on the application's workload 

profile. This section will interpret the results in the 

context of the underlying architectural differences 

between the two systems, discuss the practical 

implications, and outline the limitations of this study. 

4.1. Interpretation of OLTP Performance: Speed vs. 

Stability 

The SysBench results painted a classic picture of a trade-

off between peak performance and stability under 

contention. MySQL's superior throughput at low-to-

moderate concurrency can be attributed to the highly 

optimized nature of the InnoDB storage engine for simple 

read/write operations. Its design prioritizes speed for the 

common operations found in many web applications, 

such as key-value lookups and simple updates. However, 

the performance plateau and subsequent decline after 64 

threads strongly suggest the onset of lock contention. 

While InnoDB uses row-level locking, high contention 
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on "hot" rows or pages, along with contention on internal 

data structures like the buffer pool mutex, can lead to 

performance degradation as threads begin to wait for 

locks to be released. 

In contrast, PostgreSQL's performance, while not 

reaching the same peak TPS on this simple workload, 

demonstrated remarkable stability. Its linear scaling and 

flatter latency curve are direct consequences of its 

implementation of Multiversion Concurrency Control 

(MVCC). In the MVCC model, read operations do not 

acquire locks to see a consistent snapshot of the data; 

instead, they see a version of the data that was current at 

the beginning of their transaction. This means that 

readers do not block writers, and writers do not block 

readers. This architectural design significantly reduces 

lock contention in mixed read-write workloads, leading 

to more predictable performance as concurrency 

escalates. The slightly higher overhead of maintaining 

multiple row versions explains its lower peak 

performance on this specific test but is also the key to its 

stability. 

The TPC-C results further reinforce this interpretation. 

When the workload shifted from simple, single-table 

operations to more complex transactions involving 

multiple tables and foreign keys, PostgreSQL's more 

sophisticated query planner and efficient handling of 

complex data structures allowed it to pull ahead. MySQL, 

while fast on simple tasks, appeared to incur higher 

overhead when coordinating more complex transactional 

logic, resulting in lower throughput and higher CPU 

usage. 

4.2. Architectural Underpinnings of Performance: A 

Deeper Analysis 

To truly understand the performance disparities observed 

in Section 3, we must move beyond surface-level metrics 

and dissect the core architectural philosophies that 

govern how PostgreSQL and MySQL manage data on 

disk, handle concurrent transactions, and execute queries. 

These foundational differences in design are not 

arbitrary; they reflect historical development priorities 

and engineering trade-offs that have profound and 

predictable consequences on performance across 

different workloads. 

4.2.1. The Dichotomy of Data Storage: Clustered vs. 

Heap Tables 

A fundamental, and perhaps the most significant, 

architectural difference lies in how data is physically 

organized on disk. MySQL's InnoDB storage engine 

employs a clustered index (or index-organized table) 

structure, whereas PostgreSQL utilizes a traditional heap 

table organization. 

In InnoDB, the primary key is not just an index; it dictates 

the physical storage order of the data itself. The B-tree 

structure of the primary key contains the actual row data 

at its leaf nodes. This design has a powerful performance 

implication: primary key lookups are exceptionally fast 

because, once the index entry is found, the data is already 

there. There is no additional I/O step to fetch the row 

from a different location. This structure is highly 

advantageous for workloads with frequent lookups or 

range scans on the primary key, which partly explains 

InnoDB's strong performance in the simple SysBench 

tests where point selects are common. 

However, the clustered index model introduces a critical 

trade-off regarding secondary indexes. A secondary 

index in InnoDB does not point directly to the physical 

location of the row. Instead, it stores the primary key 

value for the row it references. Therefore, a query using 

a secondary index requires a two-step process: first, a 

lookup in the secondary index B-tree to find the primary 

key value, and second, a lookup in the primary key's B-

tree to retrieve the actual row data. This can lead to 

significant performance overhead, especially if the 

primary key is large (e.g., a UUID), as its value is 

duplicated in every single secondary index, increasing 

storage footprint and memory pressure. 

PostgreSQL, in contrast, uses a heap-based storage 

model. The rows of a table are stored in an unordered 

collection of pages, known as a heap. An index (whether 

primary key or secondary) is a separate data structure that 

contains pointers—specifically, the tuple ID (ctid), which 

is a direct physical address (page number and item 

offset)—to the location of the row in the heap file. In this 

model, all indexes are functionally secondary; they all 

work the same way by providing a direct physical pointer 

to the data. 

This approach offers greater flexibility. The physical 

storage of data is decoupled from its logical ordering, 

meaning that the choice of a primary key has no impact 

on the size of secondary indexes. Furthermore, retrieving 

a row via any index is a consistent two-step process: find 

the entry in the index, then follow the ctid pointer to the 

heap. While this might be marginally slower for a 

primary key lookup compared to InnoDB's ideal case (as 

it always requires that second step), it provides more 

consistent and predictable performance across all 

indexes. This consistency was likely a contributing factor 

to PostgreSQL's better performance in the TPC-C 

benchmark, where transactions access data through 

various keys, not just the primary one. 

4.2.2. Concurrency Control Revisited: The Nuances of 

MVCC Implementation 

While we have established that both databases use 

MVCC to facilitate concurrency, their underlying 

implementations are markedly different, leading to 

distinct operational characteristics and performance 
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trade-offs. 

PostgreSQL's MVCC implementation is built directly 

into its core storage layer. Each row (or "tuple") in the 

heap includes header fields, xmin and xmax, which store 

the transaction IDs of the transaction that created the row 

and the transaction that deleted it, respectively. When a 

transaction begins, it takes a snapshot of which 

transaction IDs are "in-progress," "committed," or 

"aborted." When it scans a table, it examines the xmin 

and xmax of each tuple version to determine if that 

version is visible to its snapshot. An UPDATE operation 

in PostgreSQL is effectively an atomic DELETE and 

INSERT; the old tuple is marked as "deleted" by setting 

its xmax to the current transaction ID, and a new version 

of the tuple is inserted into the heap. 

This elegant model means that read operations are truly 

non-blocking. However, it creates a significant 

maintenance burden: the accumulation of "dead" tuples 

from old, deleted, or updated rows. These dead tuples 

bloat the table and its indexes, consuming disk space and 

slowing down scans. This is where PostgreSQL's 

VACUUM process becomes essential. VACUUM is a 

background process responsible for reclaiming the space 

occupied by dead tuples and making it available for reuse. 

If not managed properly, table bloat can severely degrade 

performance. This maintenance overhead is a direct 

architectural cost of PostgreSQL's MVCC 

implementation. 

MySQL's InnoDB, on the other hand, implements 

MVCC using a different mechanism centered around a 

rollback segment (or undo log). Instead of storing 

versioning information in the tuple itself, InnoDB 

maintains the "current" version of the data in the 

clustered index's pages. When a row is updated, the 

original data is copied to the undo log before the row is 

modified in place. The transaction then holds a pointer to 

this "undo record." If another transaction with an earlier 

snapshot needs to see the old version of the row, InnoDB 

follows the pointers back through the undo log chain to 

reconstruct the row as it existed at that point in time. 

This approach avoids the table bloat problem seen in 

PostgreSQL, as old data versions are segregated in a 

dedicated space and the primary table storage remains 

relatively compact. However, it introduces its own 

performance challenges. Reading old versions of data can 

be slow if the transaction has to traverse a long chain of 

undo records, which requires additional I/O. 

Furthermore, the undo log itself can become a point of 

contention, and its management (purging old records) is 

a critical background task, analogous to PostgreSQL's 

VACUUM. This reliance on modifying data blocks in 

place also necessitates a more complex locking system 

for writers to prevent conflicts, which, as seen in the 

SysBench results, can become a bottleneck under high 

write contention. The stability of PostgreSQL at high 

concurrency is a testament to its tuple-based versioning, 

which avoids much of this in-place modification 

contention. 

4.2.3. The Query Optimizer's Gauntlet: From 

Planning to Execution 

The vast performance chasm in the TPC-H analytical 

benchmark is almost entirely attributable to the 

sophistication and maturity of the respective query 

optimizers. A query optimizer's role is to find the most 

efficient "execution plan" to retrieve the data requested 

by a SQL query. The complexity of this task grows 

exponentially with the number of joins and predicates in 

a query. 

PostgreSQL's query planner is the result of decades of 

academic and commercial development, tracing its 

lineage back to the Ingres project. It is a highly advanced 

cost-based optimizer that considers a wide range of 

execution strategies. For joining tables, it can choose 

from: 

● Nested Loop Join: The simplest method, 

effective for joining a small outer table with an indexed 

inner table. 

● Merge Join: Very efficient for joining two large, 

pre-sorted datasets. 

● Hash Join: The workhorse for large, unsorted 

table joins common in OLAP queries. It builds an in-

memory hash table on the smaller table and then probes 

it with rows from the larger table. 

PostgreSQL's planner meticulously estimates the cost (in 

arbitrary units of CPU and I/O) of each possible plan, 

using detailed statistics it maintains about the data 

distribution in each table (e.g., histograms, most common 

values, null fractions). This allows it to make intelligent 

decisions, such as choosing a Hash Join for a multi-

million-row join in a TPC-H query, which is almost 

always the optimal strategy. Furthermore, its support for 

a diverse set of index types, like BRIN for large, 

correlated data and GIN for inverted searches, gives the 

planner more tools to work with. 

MySQL's query optimizer, while significantly improved 

in version 8.0 with features like hash joins, has 

historically been less sophisticated, particularly for 

complex, multi-table joins. For many years, it relied 

almost exclusively on variations of the nested loop join 

(the "block nested loop"). While efficient in some OLTP 

scenarios, this algorithm performs poorly for the kinds of 

large-scale aggregations and joins found in TPC-H. 

While MySQL 8.0 can now use hash joins, its cost model 

and plan generation are often less adept at navigating the 

massive search space of a 7- or 8-table join. The TPC-H 

results, where some queries took orders of magnitude 
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longer on MySQL, strongly suggest that its optimizer 

failed to find plans as efficient as those generated by 

PostgreSQL, likely reverting to less optimal join 

strategies that resulted in excessive I/O and CPU work. 

4.2.4. Data Durability and Write Performance: A Tale 

of Two Logs 

Finally, the mechanisms ensuring data durability—the 'D' 

in the ACID properties —also differ in ways that impact 

write performance. Both systems use a Write-Ahead 

Logging (WAL) protocol. The principle is that any 

change to a data file must first be recorded in a durable 

log on disk before the change is written to the data files 

themselves. This ensures that in the event of a crash, the 

database can replay the log to recover to a consistent 

state. 

In PostgreSQL, this is managed through the WAL 

stream. Transaction commits are made durable by writing 

the WAL records to disk and flushing them. The actual 

"dirty" data pages in memory are written to disk later by 

a background CHECKPOINT process. This decouples 

the transaction commit from the main data file I/O, 

allowing for fast commit latencies. 

MySQL's InnoDB employs a similar concept with its 

redo log. The innodb_flush_log_at_trx_commit 

parameter is critical here. A setting of 1 (the default for 

full ACID compliance, and what we used) forces a flush 

of the redo log to disk at every transaction commit. This 

is safe but can be a performance bottleneck in write-

intensive workloads, as each commit must wait for a 

synchronous disk write. A setting of 2 relaxes this, 

flushing only to the OS cache, which is faster but risks 

data loss in an OS crash. This parameter provides a direct 

knob to trade durability for performance. The 

architectural necessity of this synchronous flush for full 

durability is a contributing factor to the latency observed 

in write-heavy OLTP tests. 

These deep architectural distinctions—physical storage, 

MVCC implementation, query optimization, and 

logging—are not minor details. They are the fundamental 

building blocks that dictate the performance profiles we 

observed. MySQL's architecture, with its clustered index 

and undo-log MVCC, is highly optimized for specific 

OLTP patterns but shows strain when workloads deviate 

into high contention or analytical complexity. 

PostgreSQL's architecture, with its heap storage, in-tuple 

versioning, and advanced query planner, presents a more 

robust, general-purpose platform that excels in complex 

scenarios and maintains stability under heavy concurrent 

load, albeit sometimes at the cost of peak performance in 

simpler tasks. 

4.3. Implications for Practitioners and System 

Architects 

The findings of this study provide actionable guidance 

for technology selection: 

● For high-throughput, simple OLTP workloads, 

such as those found in content management systems, user 

session stores, or certain types of web services, MySQL 

remains a formidable choice. Its performance on simple 

read/write operations is excellent, and it is often easier to 

configure and manage for these specific use cases. 

● For applications requiring complex transactional 

logic, high data integrity, and mixed workloads that 

combine transactions with analytics (often called Hybrid 

Transactional/Analytical Processing or HTAP), 

PostgreSQL is the clear and superior choice. Its robust 

performance on complex queries, coupled with its stable 

and predictable behavior under high concurrency, makes 

it ideal for financial systems, e-commerce platforms, data 

warehousing, and general-purpose enterprise 

applications. 

● The results underscore the necessity of 

workload-specific benchmarking. Relying on generic 

performance claims or benchmarks that do not reflect an 

application's specific query patterns can lead to poor 

technology choices. Organizations should invest in 

performance testing using traces of their own production 

workloads before making a final decision. 

● Tuning is not optional. The performance of both 

databases is highly sensitive to configuration. The effort 

invested in tuning parameters related to memory 

allocation, I/O, and concurrency is critical to extracting 

maximum performance from the underlying hardware. 

4.4. Limitations and Avenues for Future Research 

While this study was designed with rigor, it is important 

to acknowledge its limitations. 

1. Hardware Specificity: The benchmarks were 

conducted on a single, specific hardware configuration. 

Performance characteristics can vary on different 

hardware, particularly with respect to CPU architecture 

and storage subsystems. 

2. Workload Standardization: While standard 

benchmarks like TPC-C and TPC-H are used, they may 

not perfectly represent every possible real-world 

workload. 

3. Tuning Expertise: While we followed best 

practices for tuning, a world-class expert specializing in 

one database might be able to extract further 

performance. Our tuning represents a competent, but not 

exhaustive, effort. 

4. Scope: This study was limited to PostgreSQL 

and MySQL. Future research could expand this 
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comparison to include other popular relational databases 

or even contrast them with leading NoSQL or NewSQL 

systems. 

5. Cloud Environments: The performance 

dynamics on managed cloud database services (e.g., 

Amazon RDS, Google Cloud SQL ) could differ due to 

virtualization overhead, network I/O, and platform-

specific optimizations. A comparative study in a cloud 

context would be a valuable follow-up. 

Future work could also explore the performance of 

specific features, such as PostgreSQL's full-text search 

capabilities, geospatial functions, or the performance of 

different replication and high-availability setups for each 

database. 

5. Conclusion 

This study set out to provide a contemporary, empirical 

benchmark of PostgreSQL 16 and MySQL 8.0, 

addressing a gap in the literature concerning their 

performance on modern hardware across a spectrum of 

standardized workloads. The results confirm that the 

long-standing debate between these two database titans 

cannot be settled with a simple verdict. Instead, 

performance is a multi-faceted issue, deeply intertwined 

with application-specific workload characteristics. 

Our key findings demonstrate a clear trade-off. MySQL 

excels in scenarios defined by high-volume, simple 

transactional operations, where its optimized storage 

engine delivers superior raw throughput. However, this 

advantage diminishes under heavy concurrent load and 

complex transactional logic. PostgreSQL, conversely, 

establishes itself as the more versatile and robust system. 

Its architectural design, centered on a sophisticated 

MVCC implementation and a world-class query 

optimizer, provides exceptional stability under 

contention and a commanding performance advantage in 

complex analytical queries. 

For developers, architects, and decision-makers, the 

central takeaway is the imperative of workload-centric 

evaluation. The choice between PostgreSQL and MySQL 

should be a deliberate one, guided not by general 

reputation but by a rigorous analysis of an application's 

specific data access patterns. This research provides a 

foundational dataset and architectural context to inform 

that critical decision, ultimately enabling the construction 

of more performant, scalable, and reliable data-driven 

systems. 
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