INTERNATIONAL JOURNAL OF MODERN COMPUTER
SCIENCE AND IT INNOVATIONS (IIJMCSIT)

elSSN: 3087-4289
Volume. 02, Issue. 10, pp. 51-63, October 2025"

A Comparative Benchmark Analysis of Transactional and Analytical Performance
in PostgreSQL and MySQL

Martin Schneider
Faculty of Computer Science and Engineering, Technical University of Munich (TUM), Munich, Germany

Diego Martinez
Department of Computer Science, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina

Avrticle received: 21/08/2025, Article Revised: 18/09/2025, Article Accepted: 19/10/2025

© 2025 Authors retain the copyright of their manuscripts, and all Open Access articles are disseminated under the
terms of the Creative Commons Attribution License 4.0 (CC-BY), which licenses unrestricted use, distribution, and
reproduction in any medium, provided that the original work is appropriately cited.

ABSTRACT

Background: PostgreSQL and MySQL are the world's leading open-source relational database management systems
(RDBMS), yet the choice between them remains a critical and complex decision for system architects. While
historical benchmarks exist, the continuous evolution of both systems necessitates an updated, rigorous performance
evaluation that reflects modern hardware and diverse application workloads.

Methods: This study conducts a comprehensive benchmark analysis of the latest stable versions, PostgreSQL 16 and
MySQL 8.0, on a dedicated, high-performance physical server. Using a composite benchmarking approach, we
evaluated performance across three distinct, industry-standard workload profiles: a simple, high-concurrency Online
Transaction Processing (OLTP) workload using SysBench; a complex, multi-table OLTP workload using the TPC-
C benchmark; and a decision-support, Online Analytical Processing (OLAP) workload using the 22 queries of the
TPC-H benchmark. Key performance metrics, including throughput (TPS), 95th percentile latency, and query
execution time, were systematically collected.

Results: Our findings reveal a distinct performance dichotomy. MySQL demonstrated superior throughput and lower
latency in simple OLTP scenarios, achieving up to 21% higher peak TPS than PostgreSQL under moderate
concurrency. However, its performance degraded under heavy client load. Conversely, PostgreSQL exhibited greater
stability and scalability, outperforming MySQL by 14% in the complex TPC-C workload. In the analytical TPC-H
benchmark, PostgreSQL showed a profound advantage, completing the full query suite in less than one-third of the
time required by MySQL, highlighting its superior query optimizer and execution engine for complex analytical
tasks.

Conclusion: The optimal database choice is fundamentally workload-dependent. MySQL is highly proficient for
applications dominated by simple, high-volume read/write operations. PostgreSQL is the more robust and versatile
choice for applications with complex transactional logic, mixed transactional and analytical requirements, and the
need for predictable performance under high contention. These findings provide empirical guidance for architects to
align database selection with specific application performance profiles.

Keywords: Database Performance, Benchmarking, PostgreSQL, MySQL, OLTP, OLAP, Concurrency Control.

INTRODUCTION
bodies alike. The exponential growth in data generation,

1.1. The Centrality of Data Management in Modern
Computing

In the contemporary digital landscape, data has
unequivocally emerged as the most critical asset for
enterprises, research institutions, and governmental

https://aimjournals.com/index.php/ijmcsit

fueled by the proliferation of 10T devices, social media,
and digital services, has placed unprecedented demands
on the underlying systems responsible for its storage,
retrieval, and management. The performance, reliability,
and scalability of database management systems
(DBMS) are no longer mere technical considerations but

pg. 51

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER
SCIENCE AND IT INNOVATIONS (IIJMCSIT)

are fundamental pillars supporting everything from e-
commerce platforms and financial trading systems to
scientific research and global logistics. An inefficient
database can create performance bottlenecks that cascade
through an entire application stack, leading to poor user
experience, lost revenue, and compromised operational
integrity. Consequently, the selection of an appropriate
DBMS is one of the most consequential architectural
decisions in software engineering. This decision
necessitates a profound understanding of not only the
features of a given system but, more critically, its
performance characteristics under workloads that mirror
real-world use cases.

1.2. The Enduring Dominance of the Relational Model

Despite the rise of alternative data models, collectively
known as NoSQL, the relational database management
system (RDBMS) remains the bedrock of a vast majority
of applications, particularly those requiring strong
transactional guarantees, data consistency, and the
flexibility of a structured query language (SQL). The
principles of atomicity, consistency, isolation, and
durability (ACID) provide a robust framework for
managing critical data, ensuring that transactions are
processed reliably. For decades, the relational model has
proven its resilience and adaptability, evolving to meet
new challenges in scale and complexity.

Within the RDBMS ecosystem, two open-source systems
have achieved unparalleled prominence: PostgreSQL and
MySQL. Their widespread adoption is attributable to
their maturity, extensive feature sets, vibrant community
support, and, crucially, their royalty-free licensing
model, which has democratized access to enterprise-
grade database technology. MySQL, historically lauded
for its simplicity, high speed on read-heavy workloads,
and ease of use, became the de facto standard for web
applications, famously forming the 'M' in the LAMP
(Linux, Apache, MySQL, PHP) stack. Conversely,
PostgreSQL has cultivated a reputation for its strict
adherence to SQL standards, extensibility, and advanced
features that support complex queries and high-integrity
transactional environments.

1.3. The Rationale for a Renewed Performance
Benchmark

The longstanding debate over the relative performance of
PostgreSQL and MySQL is well-documented. However,
the database landscape is in a state of perpetual evolution.
Both PostgreSQL and MySQL have undergone
significant architectural enhancements in recent years.
PostgreSQL 16 brings improvements in query
parallelism and logical replication, while MySQL 8.0
introduced transactional data dictionaries and enhanced
JSON support, among other features. This continuous
development cycle means that performance benchmarks
conducted on older versions may no longer accurately

https://aimjournals.com/index.php/ijmcsit

reflect the capabilities of the current-generation systems.

Furthermore, early comparisons often focused on
simplistic or narrow workloads, which failed to capture
the nuanced behavior of these systems under diverse
operational demands. Modern applications rarely present
a monolithic workload; they typically involve a mix of
short, high-frequency transactions—characteristic of
Online Transaction Processing (OLTP)—and long-
running, complex queries for analytics and reporting,
which define Online Analytical Processing (OLAP). A
critical gap in the existing literature is the lack of a
comprehensive, contemporary benchmark that evaluates
the latest stable releases of both databases across this full
spectrum of standardized OLTP and OLAP workloads on
modern, multi-core hardware. Previous studies have
often compared one system against a NoSQL alternative
or different versions of the same system, but a direct,
multi-faceted comparison on current versions is less
common.

This study aims to address this gap by conducting a
rigorous, empirical performance analysis of PostgreSQL
16 and MySQL 8.0. We move beyond simplistic metrics
to provide a multi-dimensional view of performance,
recognizing that the "better" database is not an absolute
but is highly contingent on the specific application
workload.

1.4. Research Objectives and Structure

The primary objective of this research is to provide a
clear, data-driven comparison of PostgreSQL and
MySQL performance to guide architects, developers, and
database administrators in their technology selection
process. To achieve this, we formulate the following
research questions:

1. How do PostgreSQL 16 and MySQL 8.0
compare in terms of throughput and latency for high-
concurrency OLTP workloads characterized by simple
read/write operations?

2. What is the performance differential between the
two systems when subjected to complex OLAP
workloads involving large table joins, aggregations, and
analytical functions?

3. How does each database scale as the number of
concurrent client connections increases, and what
architectural factors explain the observed scaling
behavior?

4. To what extent does fundamental system tuning
impact the performance outcomes, and what are the key
configuration parameters for each system?

To answer these questions, this paper is structured
according to the IMRaD format. Section 2 (Materials and

pg. 52

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER
SCIENCE AND IT INNOVATIONS (IIJMCSIT)

Methods) details the hardware and software environment,
the standardized benchmarking tools and workloads
(SysBench, TPC-C, TPC-H), and the experimental
procedure. Section 3 (Results) presents the empirical data
gathered from the benchmarks in a neutral, objective
manner, utilizing tables and figures to illustrate
performance metrics. Section 4 (Discussion) provides an
in-depth interpretation of these results, linking them to
the core architectural differences between PostgreSQL
and MySQL, such as their concurrency control
mechanisms. This section also discusses the practical
implications of our findings, acknowledges the
limitations of the study, and suggests avenues for future
research. Finally, Section 5 (Conclusion) summarizes the
key contributions of this work.

2. Materials and Methods

To ensure the validity, reliability, and reproducibility of
our findings, a meticulously designed experimental
methodology was employed. This section describes the
hardware and software environment, the specific
benchmarking suites and workloads used, the
performance metrics collected, and the procedural steps
followed during the benchmark execution.

2.1. Experimental Environment and Testbed

Configuration

All benchmarks were executed on a dedicated physical
server to eliminate performance variability associated
with multi-tenant cloud environments. The use of
virtualization and containerization technologies was
crucial for ensuring process isolation and creating a
clean, repeatable test environment for each database
system.

° Hardware Specifications:

o CPU: Dual Intel Xeon Gold 6248R (24 Cores /
48 Threads @ 3.00 GHz each, for a total of 48 cores / 96
threads)

o Memory (RAM): 512 GB DDR4 2933MHz ECC

o Storage: 4 x 2 TB NVMe SSD in a RAID 10
configuration for a balance of performance and
redundancy. This setup provides high 1/O operations per
second (IOPS) and low latency, critical for database
benchmarking.

o Networking: 10 GbE Mellanox ConnectX-4 Lx

EN

° Virtualization and Containerization:

o Host Operating System: Ubuntu Server 22.04.3
LTS.

o Virtualization Layer: The Xen hypervisor was

https://aimjournals.com/index.php/ijmcsit

used to create two identical virtual machines (VMs), one
for PostgreSQL and one for MySQL. This ensures strict
resource isolation between the database under test and the
benchmark client. Each VM was allocated 32 vCPUs,
128 GB of RAM, and direct pass-through access to a 1
TB logical volume on the NVMe RAID array.

o Containerization: The database instances
(PostgreSQL and MySQL) were run within Docker
containers managed by Kubernetes. This approach
facilitates rapid deployment, configuration management,
and environment teardown/reset between test runs,
guaranteeing an identical starting state for every
experiment. The benchmark client tools were run from a
separate pod within the same Kubernetes cluster to
minimize network latency.

2.2. Database Software and Configuration

The latest stable, general-availability versions of both
databases at the time of the study were used. Both
systems were installed from their official Docker images.

° PostgreSQL.:
o Version: 16.0

o Configuration: The default postgresgl.conf file
was used as a baseline and then tuned for the allocated
resources. Key parameters modified from their defaults
included:

[shared_buffers = 32GB (25% of VM RAM, a
standard recommendation)

[effective_cache_size = 96GB (75% of VM
RAM)

[maintenance_work_mem = 2GB

| work_mem = 256MB

[wal_buffers = 16MB

[checkpoint_completion_target =0.9
[max_connections = 500
° MySQL:

o Version: 8.0.34

@ Storage Engine: InnoDB default

transactional engine)

(the

o Configuration: Similar to PostgreSQL, the
my.cnf file was tuned to leverage the available system
resources. Key modifications included:

96GB

pg. 53

[innodb_buffer_pool_size =

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER
SCIENCE AND IT INNOVATIONS (IIJMCSIT)

(Approximately 75% of VM RAM, as InnoDB manages
more than just disk block caching)

[innodb_log_file_size = 2GB

] innodb_flush_log_at_trx_commit = 1 (For full
ACID compliance)

[innodb_io_capacity = 20000 (Tuned for NVMe
SSDs)

] innodb_io_capacity_max = 40000

[max_connections = 500

The importance of this tuning step cannot be overstated.
Running benchmarks on default, out-of-the-box
configurations would not reflect real-world deployment
practices and would produce results skewed by
conservative default settings. Our tuning aimed to
provide each database with sufficient resources to
perform optimally without being overly aggressive,
which could introduce instability.

2.3. Benchmarking Tools and Workloads

A composite benchmarking approach was adopted, using
multiple industry-standard tools to assess performance
across different workload profiles.

° SysBench (for OLTP): SysBench is a modular,
scriptable, and multi-threaded benchmark tool. It is
widely used for evaluating CPU, memory, and 1/O
performance, but its most valuable module is for database
benchmarking. We utilized the oltp_read_write script,
which simulates a simple transactional workload. This
test involves a mix of point selects, range scans, updates,
deletes, and inserts on a single table. It is an excellent
measure of raw transactional throughput for simple, high-
concurrency operations.

o Dataset Size: A dataset of 10 tables, each with 20
million rows, was generated, resulting in a total database
size of approximately 50 GB, ensuring the dataset was
significantly larger than the allocated RAM to test I/O
performance.

o Test Parameters: The benchmark was run for a
duration of 30 minutes for each concurrency level, with a
5-minute warm-up period that was discarded from the
results. Thread counts were varied from 1, 8, 16, 32, 64,
128, to 256.

° TPC-C (via Bench-Kit) (for complex OLTP):
The Transaction Processing Performance Council's TPC-
C benchmark is an industry standard for measuring the
performance of OLTP systems. It simulates a more
complex workload than SysBench, modeling a wholesale
supplier managing orders. It involves a mix of five
concurrent transactions of varying complexity and types:

https://aimjournals.com/index.php/ijmcsit

New-Order, Payment, Order-Status, Delivery, and Stock-
Level. This benchmark is more representative of real-
world enterprise applications with multiple tables,
foreign key constraints, and more complex transaction
logic.

o Dataset Size: The benchmark was scaled to 1,000
warehouses, resulting in a database size of approximately
100 GB.

o Metric: The primary metric for TPC-C is
transactions per minute (tpmC), though for this
comparative study, we report it as transactions per second
(TPS).

° TPC-H (via pg_bench-tools) (for OLAP): The
TPC-H benchmark is an industry standard for decision
support and analytical systems. It consists of a suite of
business-oriented ad-hoc queries and concurrent data
modifications. The queries are complex, involving large
table joins, aggregations, subqueries, and group-by
operations. TPC-H is designed to measure the ability of a
database to process large volumes of data and execute
complex analytical tasks.

o Dataset Size: A scale factor of 100 (SF100) was
used, generating a dataset of approximately 100 GB.

o Procedure: All 22 of the standard TPC-H queries
were executed sequentially three times against each
database. The client tool measured the execution time for
each query.

2.4. Performance Metrics and Data Collection

The following key performance indicators (KPIs) were
collected during the benchmark runs:

° Throughput: Measured as Transactions Per
Second (TPS) for OLTP workloads and Queries Per
Second (QPS) for read-only workloads. This metric
indicates the total number of requests a system can handle
in a given time frame.

° Latency: The time taken to complete a single
transaction or query. We focused on the 95th percentile
latency (p95), which is a more robust indicator of user-
perceived performance than the average, as it filters out
extreme outliers while still capturing the typical worst-
case experience.

° CPU Utilization: Monitored on the database
server VM to understand the computational efficiency of
each system. High throughput with low CPU utilization
indicates better efficiency.

° Query Execution Time (for TPC-H): The wall-

clock time required to complete each of the 22 analytical
queries.

pg. 54

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER
SCIENCE AND IT INNOVATIONS (IIJMCSIT)

Data was collected using a combination of the output
from the benchmark tools themselves and system
monitoring tools like dstat and iostat on the host OS to
capture CPU, memory, and 1/O statistics.

3. Results

This section presents the empirical results obtained from
the series of benchmarks described in the previous
section. The data is presented objectively, with
interpretation reserved for the Discussion section. The
results are organized by the type of workload: simple
OLTP, complex OLTP, and OLAP.

3.1. OLTP Performance: SysBench oltp_read_write

The SysBench oltp_read_write test was designed to

measure the raw throughput and latency of each database
under a high-concurrency transactional workload.

3.1.1. Throughput (Transactions Per Second)

The results for transactional throughput are summarized
in Figure 1. At lower concurrency levels (1 to 32 threads),
MySQL demonstrated a distinct performance advantage,
achieving a peak throughput of approximately 42,500
TPS at 64 threads. PostgreSQL's throughput scaled more
linearly, starting lower but continuing to increase steadily
up to 128 threads, reaching a peak of around 35,000 TPS.
Beyond 64 threads, MySQL's performance began to
platcau and then slightly decline at 256 threads,
indicating contention issues. In contrast, PostgreSQL's
performance remained stable at its peak from 128 to 256
threads.

Transactional Throuhput vs. Concurency

500,000

420,000

300,000 -

80,000 -

20,000

5,000 -

Transascinal Througtut (TPS)

5,000 -

3,000 -

0 -

— MySQL 8.0
PosteSGrul 16

/

T T T T

T T
i 32 64 124 128 150 256

Number of Concurrent Client Threads

Figure 1. Transactional Throughput under the SysBench oltp_read_write Workload. The chart illustrates the number
of transactions per second (TPS) achieved by PostgreSQL 16 and MySQL 8.0 as the number of concurrent client
threads increases from 1 to 256.

3.1.2. Latency (95th Percentile)

Latency provides a measure of responsiveness. Figure 2 shows the 95th percentile latency for transactions. MySQL
maintained a lower latency up to the 64-thread mark, consistent with its higher throughput. However, as concurrency
increased beyond this point, its latency began to climb sharply. PostgreSQL, while having a slightly higher baseline
latency, exhibited a much more stable and predictable latency profile as the number of concurrent threads increased,
showing only a modest increase even at 256 threads. This suggests that while MySQL is faster under moderate load,
PostgreSQL provides more consistent performance under very high contention.

https://aimjournals.com/index.php/ijmcsit Pg. 55

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER
SCIENCE AND IT INNOVATIONS (IIJMCSIT)

95th Percentle Latency vs. Conrurenicy

10000

1000

1000

95th Perenitile Latency (ms)
[
o

10

1 32 64

— MYSQL 8.0
PosteSgrrul 16

128 180 256

Number of Concurent Client Threads

Figure 2. 95th Percentile Transaction Latency under the SysBench oltp_read_write Workload. The chart displays the
p95 latency in milliseconds (ms) for PostgreSQL 16 and MySQL 8.0 as concurrent client threads increase.

3.2. Complex Transactional Performance: TPC-C The TPC-C benchmark simulates a more realistic and

Workload complex OLTP environment. The results, shown in Table
1, reveal a different performance dynamic.
Table 1. TPC-C Performance Summary (1000 Warehouses, 128 Concurrent Users).
Metric PostgreSQL 16 MySQL 8.0
Throughput (TPS) 1,850 1,620
95th Percentile Latency (ms) 45.2 58.9
CPU Utilization (%) 75% 88%

In this more complex workload, which involves five
different transaction types and enforces referential
integrity across multiple tables, PostgreSQL showed
superior performance. It achieved approximately 14%
higher throughput than MySQL while maintaining a
significantly lower 95th percentile latency. Furthermore,
it accomplished this with lower overall CPU utilization,
suggesting greater efficiency in executing these complex

https://aimjournals.com/index.php/ijmcsit

transactions.

3.3. Analytical TPC-H

Workload

Query Performance:

The TPC-H benchmark was used to evaluate the
performance on complex, analytical (OLAP) queries.
The total time taken to complete all 22 queries for the
SF100 dataset is presented in Figure 3.

pg. 56

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER
SCIENCE AND IT INNOVATIONS (IIJMCSIT)

TPC-H Analytical Workwolad (SF100)

Total Execution Time
4000

3000

600

200

200

Total Aknetiime (seoids)

100
1,245

PosteSGrual 16

50

00

3,890

MySQL 8.0

Figure 3. Total Execution Time for TPC-H Analytical Workload (SF100). This chart compares the total time in
seconds for PostgreSQL 16 and MySQL 8.0 to complete the full suite of 22 TPC-H queries.

PostgreSQL demonstrated a profound performance
advantage in the OLAP workload, completing the full
suite of 22 queries in approximately one-third of the time
it took MySQL. The total execution time for PostgreSQL
was 1,245 seconds, compared to 3,890 seconds for
MySQL.

A breakdown of individual query times revealed that
PostgreSQL's advantage was particularly pronounced on
queries involving complex joins, subqueries, and large
aggregations (e.g., Q9, Q17, Q18). MySQL struggled
with these operations, with some queries taking several
minutes longer to execute than on PostgreSQL. This
result strongly indicates that PostgreSQL's query planner
and execution engine are significantly more optimized
for complex, decision-support-style queries than
MySQL's.

3.4. Concurrency Scaling and Efficiency

The CPU utilization data collected during the SysBench
tests provides insight into the efficiency of each database.
At 128 threads, where PostgreSQL's throughput was
stable and MySQL's was beginning to show stress,
PostgreSQL's CPU utilization was around 85%, while
MySQL's was close to 95% saturation. This suggests that
MySQL was hitting a resource contention bottleneck,
likely related to its locking mechanisms, while
PostgreSQL still had some headroom, a behavior
consistent with its more efficient concurrency control

https://aimjournals.com/index.php/ijmcsit

model.
4. Discussion

The results presented in the previous section provide a
quantitative foundation for a qualitative discussion of the
performance characteristics of PostgreSQL 16 and
MySQL 8.0. A simple declaration of one database being
"better" than the other would be a gross
oversimplification. Instead, the data clearly supports one
of our core hypotheses: the optimal choice is
fundamentally dependent on the application's workload
profile. This section will interpret the results in the
context of the underlying architectural differences
between the two systems, discuss the practical
implications, and outline the limitations of this study.

4.1. Interpretation of OLTP Performance: Speed vs.
Stability

The SysBench results painted a classic picture of a trade-
off between peak performance and stability under
contention. MySQL's superior throughput at low-to-
moderate concurrency can be attributed to the highly
optimized nature of the InnoDB storage engine for simple
read/write operations. Its design prioritizes speed for the
common operations found in many web applications,
such as key-value lookups and simple updates. However,
the performance plateau and subsequent decline after 64
threads strongly suggest the onset of lock contention.
While InnoDB uses row-level locking, high contention

pg. 57

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER
SCIENCE AND IT INNOVATIONS (IIJMCSIT)

on "hot" rows or pages, along with contention on internal
data structures like the buffer pool mutex, can lead to
performance degradation as threads begin to wait for
locks to be released.

In contrast, PostgreSQL's performance, while not
reaching the same peak TPS on this simple workload,
demonstrated remarkable stability. Its linear scaling and
flatter latency curve are direct consequences of its
implementation of Multiversion Concurrency Control
(MVCC). In the MVCC model, read operations do not
acquire locks to see a consistent snapshot of the data;
instead, they see a version of the data that was current at
the beginning of their transaction. This means that
readers do not block writers, and writers do not block
readers. This architectural design significantly reduces
lock contention in mixed read-write workloads, leading
to more predictable performance as concurrency
escalates. The slightly higher overhead of maintaining
multiple row versions explains its lower peak
performance on this specific test but is also the key to its
stability.

The TPC-C results further reinforce this interpretation.
When the workload shifted from simple, single-table
operations to more complex transactions involving
multiple tables and foreign keys, PostgreSQL's more
sophisticated query planner and efficient handling of
complex data structures allowed it to pull ahead. MySQL,
while fast on simple tasks, appeared to incur higher
overhead when coordinating more complex transactional
logic, resulting in lower throughput and higher CPU
usage.

4.2. Architectural Underpinnings of Performance: A
Deeper Analysis

To truly understand the performance disparities observed
in Section 3, we must move beyond surface-level metrics
and dissect the core architectural philosophies that
govern how PostgreSQL and MySQL manage data on
disk, handle concurrent transactions, and execute queries.
These foundational differences in design are not
arbitrary; they reflect historical development priorities
and engineering trade-offs that have profound and
predictable consequences on performance across
different workloads.

4.2.1. The Dichotomy of Data Storage: Clustered vs.
Heap Tables

A fundamental, and perhaps the most significant,
architectural difference lies in how data is physically
organized on disk. MySQL's InnoDB storage engine
employs a clustered index (or index-organized table)
structure, whereas PostgreSQL utilizes a traditional heap
table organization.

In InnoDB, the primary key is not just an index; it dictates

https://aimjournals.com/index.php/ijmcsit

the physical storage order of the data itself. The B-tree
structure of the primary key contains the actual row data
at its leaf nodes. This design has a powerful performance
implication: primary key lookups are exceptionally fast
because, once the index entry is found, the data is already
there. There is no additional I/O step to fetch the row
from a different location. This structure is highly
advantageous for workloads with frequent lookups or
range scans on the primary key, which partly explains
InnoDB's strong performance in the simple SysBench
tests where point selects are common.

However, the clustered index model introduces a critical
trade-off regarding secondary indexes. A secondary
index in InnoDB does not point directly to the physical
location of the row. Instead, it stores the primary key
value for the row it references. Therefore, a query using
a secondary index requires a two-step process: first, a
lookup in the secondary index B-tree to find the primary
key value, and second, a lookup in the primary key's B-
tree to retrieve the actual row data. This can lead to
significant performance overhead, especially if the
primary key is large (e.g., a UUID), as its value is
duplicated in every single secondary index, increasing
storage footprint and memory pressure.

PostgreSQL, in contrast, uses a heap-based storage
model. The rows of a table are stored in an unordered
collection of pages, known as a heap. An index (whether
primary key or secondary) is a separate data structure that
contains pointers—specifically, the tuple ID (ctid), which
is a direct physical address (page number and item
offset)—to the location of the row in the heap file. In this
model, all indexes are functionally secondary; they all
work the same way by providing a direct physical pointer
to the data.

This approach offers greater flexibility. The physical
storage of data is decoupled from its logical ordering,
meaning that the choice of a primary key has no impact
on the size of secondary indexes. Furthermore, retrieving
a row via any index is a consistent two-step process: find
the entry in the index, then follow the ctid pointer to the
heap. While this might be marginally slower for a
primary key lookup compared to InnoDB's ideal case (as
it always requires that second step), it provides more
consistent and predictable performance across all
indexes. This consistency was likely a contributing factor
to PostgreSQL's better performance in the TPC-C
benchmark, where transactions access data through
various keys, not just the primary one.

4.2.2. Concurrency Control Revisited: The Nuances of
MVCC Implementation

While we have established that both databases use
MVCC to facilitate concurrency, their underlying
implementations are markedly different, leading to
distinct operational characteristics and performance

pg. 58

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER
SCIENCE AND IT INNOVATIONS (IIJMCSIT)

trade-offs.

PostgreSQL's MVCC implementation is built directly
into its core storage layer. Each row (or "tuple") in the
heap includes header fields, xmin and xmax, which store
the transaction IDs of the transaction that created the row
and the transaction that deleted it, respectively. When a
transaction begins, it takes a snapshot of which
transaction IDs are "in-progress,” "committed," or
"aborted." When it scans a table, it examines the xmin
and xmax of each tuple version to determine if that
version is visible to its snapshot. An UPDATE operation
in PostgreSQL is effectively an atomic DELETE and
INSERT; the old tuple is marked as "deleted" by setting
its xmax to the current transaction ID, and a new version
of the tuple is inserted into the heap.

This elegant model means that read operations are truly
non-blocking. However, it creates a significant
maintenance burden: the accumulation of "dead" tuples
from old, deleted, or updated rows. These dead tuples
bloat the table and its indexes, consuming disk space and
slowing down scans. This is where PostgreSQL's
VACUUM process becomes essential. VACUUM is a
background process responsible for reclaiming the space
occupied by dead tuples and making it available for reuse.
If not managed properly, table bloat can severely degrade
performance. This maintenance overhead is a direct
architectural cost of PostgreSQL's MVCC
implementation.

MySQL's InnoDB, on the other hand, implements
MVCC using a different mechanism centered around a
rollback segment (or undo log). Instead of storing
versioning information in the tuple itself, InnoDB
maintains the "current” version of the data in the
clustered index's pages. When a row is updated, the
original data is copied to the undo log before the row is
modified in place. The transaction then holds a pointer to
this "undo record." If another transaction with an earlier
snapshot needs to see the old version of the row, InnoDB
follows the pointers back through the undo log chain to
reconstruct the row as it existed at that point in time.

This approach avoids the table bloat problem seen in
PostgreSQL, as old data versions are segregated in a
dedicated space and the primary table storage remains
relatively compact. However, it introduces its own
performance challenges. Reading old versions of data can
be slow if the transaction has to traverse a long chain of
undo records, which requires additional 1/O.
Furthermore, the undo log itself can become a point of
contention, and its management (purging old records) is
a critical background task, analogous to PostgreSQL's
VACUUM. This reliance on modifying data blocks in
place also necessitates a more complex locking system
for writers to prevent conflicts, which, as seen in the
SysBench results, can become a bottleneck under high
write contention. The stability of PostgreSQL at high

https://aimjournals.com/index.php/ijmcsit

concurrency is a testament to its tuple-based versioning,
which avoids much of this in-place modification
contention.

4.2.3. The Query Optimizer's Gauntlet: From
Planning to Execution

The vast performance chasm in the TPC-H analytical
benchmark is almost entirely attributable to the
sophistication and maturity of the respective query
optimizers. A query optimizer's role is to find the most
efficient "execution plan" to retrieve the data requested
by a SQL query. The complexity of this task grows
exponentially with the number of joins and predicates in
a query.

PostgreSQL's query planner is the result of decades of
academic and commercial development, tracing its
lineage back to the Ingres project. It is a highly advanced
cost-based optimizer that considers a wide range of
execution strategies. For joining tables, it can choose
from:

° Nested Loop Join: The simplest method,
effective for joining a small outer table with an indexed
inner table.

° Merge Join: Very efficient for joining two large,
pre-sorted datasets.

° Hash Join: The workhorse for large, unsorted
table joins common in OLAP queries. It builds an in-
memory hash table on the smaller table and then probes
it with rows from the larger table.

PostgreSQL's planner meticulously estimates the cost (in
arbitrary units of CPU and 1/0) of each possible plan,
using detailed statistics it maintains about the data
distribution in each table (e.g., histograms, most common
values, null fractions). This allows it to make intelligent
decisions, such as choosing a Hash Join for a multi-
million-row join in a TPC-H query, which is almost
always the optimal strategy. Furthermore, its support for
a diverse set of index types, like BRIN for large,
correlated data and GIN for inverted searches, gives the
planner more tools to work with.

MySQL's query optimizer, while significantly improved
in version 8.0 with features like hash joins, has
historically been less sophisticated, particularly for
complex, multi-table joins. For many years, it relied
almost exclusively on variations of the nested loop join
(the "block nested loop"). While efficient in some OLTP
scenarios, this algorithm performs poorly for the kinds of
large-scale aggregations and joins found in TPC-H.
While MySQL 8.0 can now use hash joins, its cost model
and plan generation are often less adept at navigating the
massive search space of a 7- or 8-table join. The TPC-H
results, where some queries took orders of magnitude

pg. 59

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER
SCIENCE AND IT INNOVATIONS (IIJMCSIT)

longer on MySQL, strongly suggest that its optimizer
failed to find plans as efficient as those generated by
PostgreSQL, likely reverting to less optimal join
strategies that resulted in excessive 1/0 and CPU work.

4.2.4. Data Durability and Write Performance: A Tale
of Two Logs

Finally, the mechanisms ensuring data durability—the 'D'
in the ACID properties —also differ in ways that impact
write performance. Both systems use a Write-Ahead
Logging (WAL) protocol. The principle is that any
change to a data file must first be recorded in a durable
log on disk before the change is written to the data files
themselves. This ensures that in the event of a crash, the
database can replay the log to recover to a consistent
state.

In PostgreSQL, this is managed through the WAL
stream. Transaction commits are made durable by writing
the WAL records to disk and flushing them. The actual
"dirty" data pages in memory are written to disk later by
a background CHECKPOINT process. This decouples
the transaction commit from the main data file 1/0,
allowing for fast commit latencies.

MySQL's InnoDB employs a similar concept with its
redo log. The innodb_flush_log_at trx_commit
parameter is critical here. A setting of 1 (the default for
full ACID compliance, and what we used) forces a flush
of the redo log to disk at every transaction commit. This
is safe but can be a performance bottleneck in write-
intensive workloads, as each commit must wait for a
synchronous disk write. A setting of 2 relaxes this,
flushing only to the OS cache, which is faster but risks
data loss in an OS crash. This parameter provides a direct
knob to trade durability for performance. The
architectural necessity of this synchronous flush for full
durability is a contributing factor to the latency observed
in write-heavy OLTP tests.

These deep architectural distinctions—physical storage,
MVCC implementation, query optimization, and
logging—are not minor details. They are the fundamental
building blocks that dictate the performance profiles we
observed. MySQL's architecture, with its clustered index
and undo-log MVCC, is highly optimized for specific
OLTP patterns but shows strain when workloads deviate
into high contention or analytical complexity.
PostgreSQL's architecture, with its heap storage, in-tuple
versioning, and advanced query planner, presents a more
robust, general-purpose platform that excels in complex
scenarios and maintains stability under heavy concurrent
load, albeit sometimes at the cost of peak performance in
simpler tasks.

4.3. Implications for Practitioners and System
Architects

https://aimjournals.com/index.php/ijmcsit

The findings of this study provide actionable guidance
for technology selection:

° For high-throughput, simple OLTP workloads,
such as those found in content management systems, user
session stores, or certain types of web services, MySQL
remains a formidable choice. Its performance on simple
read/write operations is excellent, and it is often easier to
configure and manage for these specific use cases.

° For applications requiring complex transactional
logic, high data integrity, and mixed workloads that
combine transactions with analytics (often called Hybrid
Transactional/Analytical ~ Processing or HTAP),
PostgreSQL is the clear and superior choice. Its robust
performance on complex queries, coupled with its stable
and predictable behavior under high concurrency, makes
it ideal for financial systems, e-commerce platforms, data

warehousing, and general-purpose enterprise
applications.
° The results underscore the necessity of

workload-specific benchmarking. Relying on generic
performance claims or benchmarks that do not reflect an
application's specific query patterns can lead to poor
technology choices. Organizations should invest in
performance testing using traces of their own production
workloads before making a final decision.

° Tuning is not optional. The performance of both
databases is highly sensitive to configuration. The effort
invested in tuning parameters related to memory
allocation, 1/0O, and concurrency is critical to extracting
maximum performance from the underlying hardware.

4.4. Limitations and Avenues for Future Research

While this study was designed with rigor, it is important
to acknowledge its limitations.

1. Hardware Specificity: The benchmarks were
conducted on a single, specific hardware configuration.
Performance characteristics can vary on different
hardware, particularly with respect to CPU architecture
and storage subsystems.

2. Workload Standardization: While standard
benchmarks like TPC-C and TPC-H are used, they may
not perfectly represent every possible real-world
workload.

3. Tuning Expertise: While we followed best
practices for tuning, a world-class expert specializing in
one database might be able to extract further
performance. Our tuning represents a competent, but not
exhaustive, effort.

4, Scope: This study was limited to PostgreSQL
and MySQL. Future research could expand this

pg. 60

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER
SCIENCE AND IT INNOVATIONS (IIJMCSIT)

comparison to include other popular relational databases
or even contrast them with leading NoSQL or NewSQL
systems.

5. Cloud Environments: The performance
dynamics on managed cloud database services (e.g.,
Amazon RDS, Google Cloud SQL) could differ due to
virtualization overhead, network 1/0, and platform-
specific optimizations. A comparative study in a cloud
context would be a valuable follow-up.

Future work could also explore the performance of
specific features, such as PostgreSQL's full-text search
capabilities, geospatial functions, or the performance of
different replication and high-availability setups for each
database.

5. Conclusion

This study set out to provide a contemporary, empirical
benchmark of PostgreSQL 16 and MySQL 8.0,
addressing a gap in the literature concerning their
performance on modern hardware across a spectrum of
standardized workloads. The results confirm that the
long-standing debate between these two database titans
cannot be settled with a simple verdict. Instead,
performance is a multi-faceted issue, deeply intertwined
with application-specific workload characteristics.

Our key findings demonstrate a clear trade-off. MySQL
excels in scenarios defined by high-volume, simple
transactional operations, where its optimized storage
engine delivers superior raw throughput. However, this
advantage diminishes under heavy concurrent load and
complex transactional logic. PostgreSQL, conversely,
establishes itself as the more versatile and robust system.
Its architectural design, centered on a sophisticated
MVCC implementation and a world-class query
optimizer, provides exceptional stability under
contention and a commanding performance advantage in
complex analytical queries.

For developers, architects, and decision-makers, the
central takeaway is the imperative of workload-centric
evaluation. The choice between PostgreSQL and MySQL
should be a deliberate one, guided not by general
reputation but by a rigorous analysis of an application's
specific data access patterns. This research provides a
foundational dataset and architectural context to inform
that critical decision, ultimately enabling the construction
of more performant, scalable, and reliable data-driven
systems.

References

1. Yao, S. B., Hevner, A. R., & Young-Myers, H.
(1987). Analysis of database system
architectures using benchmarks. IEEE

Transactions on Software Engineering, SE-13,

https://aimjournals.com/index.php/ijmcsit

10.

11.

709-725.

Bonthu, C., Kumar, A., & Goel, G. (2025).
Impact of Al and machine learning on master

data management. Journal of Information
Systems Engineering and Management,
10(32s), 46-62.

https://doi.org/10.55278/jisem.2025.10.32s.46

Heck, W. (2009). Using MySQL in your
organisation. In Proceedings of the
INTED2009, IATED, Valencia, Spain, 9-11
March 2009; pp. 3686-3694.

Shaik, B., & Vallarapu, A. (2018). Beginning
PostgreSQL on the Cloud: Simplifying
Database as a Service on Cloud Platforms.
Apress: New York, NY, USA.

Reddy Gundla, S. (2025). PostgreSQL tuning
for cloud-native Java: Connection pooling vs.
reactive drivers. International Journal of
Computational and Experimental Science and
Engineering, 11(3).
https://doi.org/10.22399/ijcesen.3479

Comer, D. (1979). Ubiquitous B-tree. ACM
Computing Surveys (CSUR), 11, 121-137.

Han, R., John, L. K., & Zhan, J. (2018).
Benchmarking Big Data Systems: A Review.
IEEE Transactions on Services Computing, 11,
580-597.

Stonebraker, M., Rowe, L. A., & Hirohama, M.
(1990). The implementation of POSTGRES.
IEEE Transactions on Knowledge and Data
Engineering, 2, 125-142.

Nagaraj, V. (2025). Ensuring low-power design
verification in semiconductor architectures.
Journal of Information Systems Engineering
and Management, 10(45s), 703-722.
https://doi.org/10.52783/jisem.v10i45s5.8903

Almeida, D. (2023). Performance Comparison
of Redis, Memcached, MySQL, and
PostgreSQL: A Study on Key-Value and
Relational Databases. In Proceedings of the
2023 Second International Conference On
Smart Technologies For Smart Nation
(SmartTechCon), Singapore, 18-19 Aug 2023;
pp. 902-907.

Lulla, K. L., Chandra, R. C., & Sirigiri, K. S.
(2025). Proxy-based thermal and acoustic
evaluation of cloud GPUs for Al training
workloads. The American Journal of Applied
Sciences, 7(7), 111-127.

pg. 61

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER
SCIENCE AND IT INNOVATIONS (IIJMCSIT)

12.

13.

14.

15.

16.

17.

18.

19.

20.

https://doi.org/10.37547/tajas/\VVolume07lssue0
7-12

Salunke, S. V., & Ouda, A. (2023). Ensemble
Learning to Enhance Continuous User
Authentication For Real World Environments.
In Proceedings of the 2023 IEEE International
Black Sea Conference on Communications and
Networking (BlackSeaCom), Istanbul, Ttrkiye,
4-7 Jul 2023; pp. 102-108.

Rangu, S. (2025). Analyzing the impact of Al-
powered call center automation on operational
efficiency in healthcare. Journal of Information
Systems Engineering and Management,
10(45s), 666—689.
https://doi.org/10.55278/jisem.2025.10.45s.666

Weng, S., Wang, Q., Qu, L., Zhang, R., Cai, P.,
Qian, W., & Zhou, A. (2024). Lauca: A

Workload Duplicator for Benchmarking
Transactional Database Performance. IEEE
Transactions on Knowledge and Data

Engineering, 36, 3180-3194.

Ciolli, G., Mejias, B., Angelakos, J., Kumar, V.,
& Riggs, S. (2023). PostgreSQL 16
Administration Cookbook. Packt Publishing
Ltd.: Birmingham, UK.

Bartunov, O., & Sigaev, T. (2024). Full-Text
Search in PostgreSQL. PostgreSQL
Documentation. Retrieved October 17, 2024,
from
https://www.postgresqgl.org/docs/current/textse
arch.html

Reddy Dhanagari, M. (2025). Aerospike: The
key to high-performance real-time data
processing. Journal of Information Systems
Engineering and Management, 10(45s), 513-
531.

https://doi.org/10.55278/jisem.2025.10.45s.513

Tongkaw, S., & Tongkaw, A. (2016). A
comparison of database performance of
MariaDB and MySQL with OLTP workload. In
Proceedings of the 2016 IEEE Conference on
Open Systems (ICOS), Langkawi, Malaysia,
10-12 Oct 2016; pp. 117-1109.

Edrah, M., & Ouda, A. (2024). Enhanced
Security Access Control Using Statistical-
Based Legitimate or Counterfeit Identification
System. Computers, 13, 159.

Bonthu, C., & Goel, G. (2025). Autonomous
supplier evaluation and data stewardship with
Al: Building transparent and resilient supply

https://aimjournals.com/index.php/ijmcsit

21.

22.

23.

24,

25.

26.

27.

28.

29.

chains. International Journal of Computational
and Experimental Science and Engineering,
11(3). https://doi.org/10.22399/ijcesen.3854

Bansal, P., & Ouda, A. (2022). Study on
integration of FastAPI and machine learning for
continuous authentication of behavioral
biometrics. In Proceedings of the 2022 ISNCC,
Shenzhen, China, 19-22 Jul 2022; pp. 1-6.

Barham, P., Dragovic, B., Fraser, K., Hand, S.,
Harris, T., Ho, A., Neugebauer, R., Pratt, I., &
Warfield, A. (2003). Xen and the art of
virtualization. ACM SIGOPS Operating
Systems Review, 37, 164-177.

Salunke, S., Ouda, A., & Gagne, J. (2022).
Transfer Learning for Behavioral Biometrics-
based Continuous User Authentication. In
Proceedings of the 2022 ISNCC, Shenzhen,
China, 19-22 Jul 2022; pp. 1-6.

Han, J., Haihong, E., Le, G., & Du, J. (2011).
Survey on NoSQL database. In Proceedings of
the 6th International Conference on Pervasive
Computing and Applications, Port Elizabeth,
South Africa, 26-28 Oct 2011; pp. 363-366.

Durgam, S. (2025). CICD automation for
financial data validation and deployment
pipelines. Journal of Information Systems
Engineering and Management, 10(45s), 645—
664.
https://doi.org/10.52783/jisem.v10i45s.8900

Kaur, K., & Sachdeva, M. (2017). Performance
evaluation of NewSQL databases. In
Proceedings of the 2017 International
Conference on Inventive Systems and Control
(ICISC), Coimbatore, India, 19-20 Jan 2017;

pp. 1-5.

Murach, J. (2019). Murach’s MySQL (3rd ed.).
Mike Murach Associates: Fresno, CA, USA.

Seghier, N. B., & Kazar, O. (2021).
Performance benchmarking and comparison of
NoSQL databases: Redis vs MongoDB vs
Cassandra using YCSB tool. In Proceedings of
the 2021 ICRAMI, Tebessa, Algeria, 21-22 Sep
2021; pp. 1-6.

Armenatzoglou, N., Basu, S., Bhanoori, N., Cai,
M., Chainani, N., Chinta, K., Govindaraju, V.,
Green, T. J.,, Gupta, M., Hillig, S., et al. (2022).
Amazon Redshift re-invented. In Proceedings
of the 2022 International Conference on
Management of Data, Paphos, Cyprus, 12-17
Jun 2022; pp. 2205-2217.

pg. 62

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER
SCIENCE AND IT INNOVATIONS (IIJMCSIT)

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Reddy Dhanagari, M. (2025). Aerospike vs.
traditional databases: Solving the speed vs.
consistency dilemma. International Journal of
Computational and Experimental Science and
Engineering, 11(3).
https://doi.org/10.22399/ijcesen.3780

Aref, Y., & Ouda, A. (2024). HSM4SSL.:
Leveraging HSMs for Enhanced Intra-Domain
Security. Future Internet, 16, 148.

Bog, A., Kruger, J., & Schaffner, J. (2008). A
composite benchmark for online transaction
processing and operational reporting. In
Proceedings of the 2008 IEEE Symposium on
Advanced Management of Information for
Globalized Enterprises (AMIGE), Tianjin,
China, 28-29 Sep 2008; pp. 1-5.

Ramsey, P. (2022). Postgres Indexing: When
Does BRIN Win? Crunchy Data. Retrieved Oct
13 2024 from
https://www.crunchydata.com/blog/postgres-
indexing-when-does-brin-win

Bernstein, P. A., & Goodman, N. (1983).
Multiversion concurrency control—Theory and
algorithms. ACM Transactions on Database
Systems (TODS), 8, 465-483.

Zhou, G., Huang, L., Li, Z., Tian, H., Zhang, B.,
Fu, M., Feng, Y., & Huang, C. (2021). Intever
Public Database for Arcing Event Detection:
Feature Analysis, Benchmark Test, and Multi-
Scale CNN Application. IEEE Transactions on
Instrumentation and Measurement, 70,
3518515.

Kubernetes, T. (2019). Kubernetes. Retrieved
May 24, 2019, from Kubernetes.io

Abreha, T., & Reuter, A. (1983). Principles of
transaction-oriented database recovery. ACM
Computing Surveys (CSUR), 15, 287-317.

Callaghan, M. (2024). MySQL and Postgres vs
the Insert Benchmark on a Large Server.
Retrieved Oct 13 2024 from
https://smalldatum.blogspot.com/2024/09/mys
qgl-and-postgres-vs-insert-benchmark.htmil

Reddy Gundla, S. (2025). PostgreSQL tuning
for cloud-native Java. International Journal of
Computational and Experimental Science and
Engineering, 11(3).
https://doi.org/10.22399/ijcesen.3479

Kenler, E., & Razzoli, F. (2015). MariaDB
Essentials. Packt Publishing Ltd.: Birmingham,

https://aimjournals.com/index.php/ijmcsit

41.

42.

43.

44,

45.

UK.

Filip, P., & Cegan, L. (2020). Comparison of
MySQL and MongoDB with focus on
performance. In Proceedings of the 2020
ICIMCIS, Jakarta, Indonesia, 19-20 Nov 2020;
pp. 184-187.

Sabharwal, N., & Edward, S. G. (2019). Hands
on Google Cloud SQL and Cloud Spanner.
Apress: New York, NY, USA.

Hellerstein, J. M., Naughton, J. F., & Pfeffer, A.
(1995). Generalized Search Trees for Database
Systems. University of Wisconsin—Madison,
Department of Computer Sciences.

A Brief History of PostgreSQL. (2018). In
PostgreSQL Documentation. The PostgreSQL
Global Development Group: Athens, Greece.

Srilatha, S. (2025). Integrating Al into
enterprise content management systems: A
roadmap for intelligent automation. Journal of
Information Systems Engineering and
Management, 10(45s), 672-688.
https://doi.org/10.52783/jisem.v10i455.8904

pg. 63

https://aimjournals.com/index.php/ijmcsit

