
INTERNATIONAL JOURNAL OF MODERN COMPUTER

SCIENCE AND IT INNOVATIONS (IJMCSIT)

https://aimjournals.com/index.php/ijmcsit

pg. 51

eISSN: 3087-4289

Volume. 02, Issue. 10, pp. 51-63, October 2025"

A Comparative Benchmark Analysis of Transactional and Analytical Performance

in PostgreSQL and MySQL

Martin Schneider

Faculty of Computer Science and Engineering, Technical University of Munich (TUM), Munich, Germany

Diego Martínez

Department of Computer Science, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina

Article received: 21/08/2025, Article Revised: 18/09/2025, Article Accepted: 19/10/2025

© 2025 Authors retain the copyright of their manuscripts, and all Open Access articles are disseminated under the

terms of the Creative Commons Attribution License 4.0 (CC-BY), which licenses unrestricted use, distribution, and

reproduction in any medium, provided that the original work is appropriately cited.

ABSTRACT

Background: PostgreSQL and MySQL are the world's leading open-source relational database management systems

(RDBMS), yet the choice between them remains a critical and complex decision for system architects. While

historical benchmarks exist, the continuous evolution of both systems necessitates an updated, rigorous performance

evaluation that reflects modern hardware and diverse application workloads.

Methods: This study conducts a comprehensive benchmark analysis of the latest stable versions, PostgreSQL 16 and

MySQL 8.0, on a dedicated, high-performance physical server. Using a composite benchmarking approach, we

evaluated performance across three distinct, industry-standard workload profiles: a simple, high-concurrency Online

Transaction Processing (OLTP) workload using SysBench; a complex, multi-table OLTP workload using the TPC-

C benchmark; and a decision-support, Online Analytical Processing (OLAP) workload using the 22 queries of the

TPC-H benchmark. Key performance metrics, including throughput (TPS), 95th percentile latency, and query

execution time, were systematically collected.

Results: Our findings reveal a distinct performance dichotomy. MySQL demonstrated superior throughput and lower

latency in simple OLTP scenarios, achieving up to 21% higher peak TPS than PostgreSQL under moderate

concurrency. However, its performance degraded under heavy client load. Conversely, PostgreSQL exhibited greater

stability and scalability, outperforming MySQL by 14% in the complex TPC-C workload. In the analytical TPC-H

benchmark, PostgreSQL showed a profound advantage, completing the full query suite in less than one-third of the

time required by MySQL, highlighting its superior query optimizer and execution engine for complex analytical

tasks.

Conclusion: The optimal database choice is fundamentally workload-dependent. MySQL is highly proficient for

applications dominated by simple, high-volume read/write operations. PostgreSQL is the more robust and versatile

choice for applications with complex transactional logic, mixed transactional and analytical requirements, and the

need for predictable performance under high contention. These findings provide empirical guidance for architects to

align database selection with specific application performance profiles.

Keywords: Database Performance, Benchmarking, PostgreSQL, MySQL, OLTP, OLAP, Concurrency Control.

INTRODUCTION

1.1. The Centrality of Data Management in Modern

Computing

In the contemporary digital landscape, data has

unequivocally emerged as the most critical asset for

enterprises, research institutions, and governmental

bodies alike. The exponential growth in data generation,

fueled by the proliferation of IoT devices, social media,

and digital services, has placed unprecedented demands

on the underlying systems responsible for its storage,

retrieval, and management. The performance, reliability,

and scalability of database management systems

(DBMS) are no longer mere technical considerations but

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER

SCIENCE AND IT INNOVATIONS (IJMCSIT)

https://aimjournals.com/index.php/ijmcsit

pg. 52

are fundamental pillars supporting everything from e-

commerce platforms and financial trading systems to

scientific research and global logistics. An inefficient

database can create performance bottlenecks that cascade

through an entire application stack, leading to poor user

experience, lost revenue, and compromised operational

integrity. Consequently, the selection of an appropriate

DBMS is one of the most consequential architectural

decisions in software engineering. This decision

necessitates a profound understanding of not only the

features of a given system but, more critically, its

performance characteristics under workloads that mirror

real-world use cases.

1.2. The Enduring Dominance of the Relational Model

Despite the rise of alternative data models, collectively

known as NoSQL, the relational database management

system (RDBMS) remains the bedrock of a vast majority

of applications, particularly those requiring strong

transactional guarantees, data consistency, and the

flexibility of a structured query language (SQL). The

principles of atomicity, consistency, isolation, and

durability (ACID) provide a robust framework for

managing critical data, ensuring that transactions are

processed reliably. For decades, the relational model has

proven its resilience and adaptability, evolving to meet

new challenges in scale and complexity.

Within the RDBMS ecosystem, two open-source systems

have achieved unparalleled prominence: PostgreSQL and

MySQL. Their widespread adoption is attributable to

their maturity, extensive feature sets, vibrant community

support, and, crucially, their royalty-free licensing

model, which has democratized access to enterprise-

grade database technology. MySQL, historically lauded

for its simplicity, high speed on read-heavy workloads,

and ease of use, became the de facto standard for web

applications, famously forming the 'M' in the LAMP

(Linux, Apache, MySQL, PHP) stack. Conversely,

PostgreSQL has cultivated a reputation for its strict

adherence to SQL standards, extensibility, and advanced

features that support complex queries and high-integrity

transactional environments.

1.3. The Rationale for a Renewed Performance

Benchmark

The longstanding debate over the relative performance of

PostgreSQL and MySQL is well-documented. However,

the database landscape is in a state of perpetual evolution.

Both PostgreSQL and MySQL have undergone

significant architectural enhancements in recent years.

PostgreSQL 16 brings improvements in query

parallelism and logical replication, while MySQL 8.0

introduced transactional data dictionaries and enhanced

JSON support, among other features. This continuous

development cycle means that performance benchmarks

conducted on older versions may no longer accurately

reflect the capabilities of the current-generation systems.

Furthermore, early comparisons often focused on

simplistic or narrow workloads, which failed to capture

the nuanced behavior of these systems under diverse

operational demands. Modern applications rarely present

a monolithic workload; they typically involve a mix of

short, high-frequency transactions—characteristic of

Online Transaction Processing (OLTP)—and long-

running, complex queries for analytics and reporting,

which define Online Analytical Processing (OLAP). A

critical gap in the existing literature is the lack of a

comprehensive, contemporary benchmark that evaluates

the latest stable releases of both databases across this full

spectrum of standardized OLTP and OLAP workloads on

modern, multi-core hardware. Previous studies have

often compared one system against a NoSQL alternative

or different versions of the same system, but a direct,

multi-faceted comparison on current versions is less

common.

This study aims to address this gap by conducting a

rigorous, empirical performance analysis of PostgreSQL

16 and MySQL 8.0. We move beyond simplistic metrics

to provide a multi-dimensional view of performance,

recognizing that the "better" database is not an absolute

but is highly contingent on the specific application

workload.

1.4. Research Objectives and Structure

The primary objective of this research is to provide a

clear, data-driven comparison of PostgreSQL and

MySQL performance to guide architects, developers, and

database administrators in their technology selection

process. To achieve this, we formulate the following

research questions:

1. How do PostgreSQL 16 and MySQL 8.0

compare in terms of throughput and latency for high-

concurrency OLTP workloads characterized by simple

read/write operations?

2. What is the performance differential between the

two systems when subjected to complex OLAP

workloads involving large table joins, aggregations, and

analytical functions?

3. How does each database scale as the number of

concurrent client connections increases, and what

architectural factors explain the observed scaling

behavior?

4. To what extent does fundamental system tuning

impact the performance outcomes, and what are the key

configuration parameters for each system?

To answer these questions, this paper is structured

according to the IMRaD format. Section 2 (Materials and

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER

SCIENCE AND IT INNOVATIONS (IJMCSIT)

https://aimjournals.com/index.php/ijmcsit

pg. 53

Methods) details the hardware and software environment,

the standardized benchmarking tools and workloads

(SysBench, TPC-C, TPC-H), and the experimental

procedure. Section 3 (Results) presents the empirical data

gathered from the benchmarks in a neutral, objective

manner, utilizing tables and figures to illustrate

performance metrics. Section 4 (Discussion) provides an

in-depth interpretation of these results, linking them to

the core architectural differences between PostgreSQL

and MySQL, such as their concurrency control

mechanisms. This section also discusses the practical

implications of our findings, acknowledges the

limitations of the study, and suggests avenues for future

research. Finally, Section 5 (Conclusion) summarizes the

key contributions of this work.

2. Materials and Methods

To ensure the validity, reliability, and reproducibility of

our findings, a meticulously designed experimental

methodology was employed. This section describes the

hardware and software environment, the specific

benchmarking suites and workloads used, the

performance metrics collected, and the procedural steps

followed during the benchmark execution.

2.1. Experimental Environment and Testbed

Configuration

All benchmarks were executed on a dedicated physical

server to eliminate performance variability associated

with multi-tenant cloud environments. The use of

virtualization and containerization technologies was

crucial for ensuring process isolation and creating a

clean, repeatable test environment for each database

system.

● Hardware Specifications:

○ CPU: Dual Intel Xeon Gold 6248R (24 Cores /

48 Threads @ 3.00 GHz each, for a total of 48 cores / 96

threads)

○ Memory (RAM): 512 GB DDR4 2933MHz ECC

○ Storage: 4 x 2 TB NVMe SSD in a RAID 10

configuration for a balance of performance and

redundancy. This setup provides high I/O operations per

second (IOPS) and low latency, critical for database

benchmarking.

○ Networking: 10 GbE Mellanox ConnectX-4 Lx

EN

● Virtualization and Containerization:

○ Host Operating System: Ubuntu Server 22.04.3

LTS.

○ Virtualization Layer: The Xen hypervisor was

used to create two identical virtual machines (VMs), one

for PostgreSQL and one for MySQL. This ensures strict

resource isolation between the database under test and the

benchmark client. Each VM was allocated 32 vCPUs,

128 GB of RAM, and direct pass-through access to a 1

TB logical volume on the NVMe RAID array.

○ Containerization: The database instances

(PostgreSQL and MySQL) were run within Docker

containers managed by Kubernetes. This approach

facilitates rapid deployment, configuration management,

and environment teardown/reset between test runs,

guaranteeing an identical starting state for every

experiment. The benchmark client tools were run from a

separate pod within the same Kubernetes cluster to

minimize network latency.

2.2. Database Software and Configuration

The latest stable, general-availability versions of both

databases at the time of the study were used. Both

systems were installed from their official Docker images.

● PostgreSQL:

○ Version: 16.0

○ Configuration: The default postgresql.conf file

was used as a baseline and then tuned for the allocated

resources. Key parameters modified from their defaults

included:

■ shared_buffers = 32GB (25% of VM RAM, a

standard recommendation)

■ effective_cache_size = 96GB (75% of VM

RAM)

■ maintenance_work_mem = 2GB

■ work_mem = 256MB

■ wal_buffers = 16MB

■ checkpoint_completion_target = 0.9

■ max_connections = 500

● MySQL:

○ Version: 8.0.34

○ Storage Engine: InnoDB (the default

transactional engine)

○ Configuration: Similar to PostgreSQL, the

my.cnf file was tuned to leverage the available system

resources. Key modifications included:

■ innodb_buffer_pool_size = 96GB

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER

SCIENCE AND IT INNOVATIONS (IJMCSIT)

https://aimjournals.com/index.php/ijmcsit

pg. 54

(Approximately 75% of VM RAM, as InnoDB manages

more than just disk block caching)

■ innodb_log_file_size = 2GB

■ innodb_flush_log_at_trx_commit = 1 (For full

ACID compliance)

■ innodb_io_capacity = 20000 (Tuned for NVMe

SSDs)

■ innodb_io_capacity_max = 40000

■ max_connections = 500

The importance of this tuning step cannot be overstated.

Running benchmarks on default, out-of-the-box

configurations would not reflect real-world deployment

practices and would produce results skewed by

conservative default settings. Our tuning aimed to

provide each database with sufficient resources to

perform optimally without being overly aggressive,

which could introduce instability.

2.3. Benchmarking Tools and Workloads

A composite benchmarking approach was adopted, using

multiple industry-standard tools to assess performance

across different workload profiles.

● SysBench (for OLTP): SysBench is a modular,

scriptable, and multi-threaded benchmark tool. It is

widely used for evaluating CPU, memory, and I/O

performance, but its most valuable module is for database

benchmarking. We utilized the oltp_read_write script,

which simulates a simple transactional workload. This

test involves a mix of point selects, range scans, updates,

deletes, and inserts on a single table. It is an excellent

measure of raw transactional throughput for simple, high-

concurrency operations.

○ Dataset Size: A dataset of 10 tables, each with 20

million rows, was generated, resulting in a total database

size of approximately 50 GB, ensuring the dataset was

significantly larger than the allocated RAM to test I/O

performance.

○ Test Parameters: The benchmark was run for a

duration of 30 minutes for each concurrency level, with a

5-minute warm-up period that was discarded from the

results. Thread counts were varied from 1, 8, 16, 32, 64,

128, to 256.

● TPC-C (via Bench-Kit) (for complex OLTP):

The Transaction Processing Performance Council's TPC-

C benchmark is an industry standard for measuring the

performance of OLTP systems. It simulates a more

complex workload than SysBench, modeling a wholesale

supplier managing orders. It involves a mix of five

concurrent transactions of varying complexity and types:

New-Order, Payment, Order-Status, Delivery, and Stock-

Level. This benchmark is more representative of real-

world enterprise applications with multiple tables,

foreign key constraints, and more complex transaction

logic.

○ Dataset Size: The benchmark was scaled to 1,000

warehouses, resulting in a database size of approximately

100 GB.

○ Metric: The primary metric for TPC-C is

transactions per minute (tpmC), though for this

comparative study, we report it as transactions per second

(TPS).

● TPC-H (via pg_bench-tools) (for OLAP): The

TPC-H benchmark is an industry standard for decision

support and analytical systems. It consists of a suite of

business-oriented ad-hoc queries and concurrent data

modifications. The queries are complex, involving large

table joins, aggregations, subqueries, and group-by

operations. TPC-H is designed to measure the ability of a

database to process large volumes of data and execute

complex analytical tasks.

○ Dataset Size: A scale factor of 100 (SF100) was

used, generating a dataset of approximately 100 GB.

○ Procedure: All 22 of the standard TPC-H queries

were executed sequentially three times against each

database. The client tool measured the execution time for

each query.

2.4. Performance Metrics and Data Collection

The following key performance indicators (KPIs) were

collected during the benchmark runs:

● Throughput: Measured as Transactions Per

Second (TPS) for OLTP workloads and Queries Per

Second (QPS) for read-only workloads. This metric

indicates the total number of requests a system can handle

in a given time frame.

● Latency: The time taken to complete a single

transaction or query. We focused on the 95th percentile

latency (p95), which is a more robust indicator of user-

perceived performance than the average, as it filters out

extreme outliers while still capturing the typical worst-

case experience.

● CPU Utilization: Monitored on the database

server VM to understand the computational efficiency of

each system. High throughput with low CPU utilization

indicates better efficiency.

● Query Execution Time (for TPC-H): The wall-

clock time required to complete each of the 22 analytical

queries.

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER

SCIENCE AND IT INNOVATIONS (IJMCSIT)

https://aimjournals.com/index.php/ijmcsit

pg. 55

Data was collected using a combination of the output

from the benchmark tools themselves and system

monitoring tools like dstat and iostat on the host OS to

capture CPU, memory, and I/O statistics.

3. Results

This section presents the empirical results obtained from

the series of benchmarks described in the previous

section. The data is presented objectively, with

interpretation reserved for the Discussion section. The

results are organized by the type of workload: simple

OLTP, complex OLTP, and OLAP.

3.1. OLTP Performance: SysBench oltp_read_write

The SysBench oltp_read_write test was designed to

measure the raw throughput and latency of each database

under a high-concurrency transactional workload.

3.1.1. Throughput (Transactions Per Second)

The results for transactional throughput are summarized

in Figure 1. At lower concurrency levels (1 to 32 threads),

MySQL demonstrated a distinct performance advantage,

achieving a peak throughput of approximately 42,500

TPS at 64 threads. PostgreSQL's throughput scaled more

linearly, starting lower but continuing to increase steadily

up to 128 threads, reaching a peak of around 35,000 TPS.

Beyond 64 threads, MySQL's performance began to

plateau and then slightly decline at 256 threads,

indicating contention issues. In contrast, PostgreSQL's

performance remained stable at its peak from 128 to 256

threads.

Figure 1. Transactional Throughput under the SysBench oltp_read_write Workload. The chart illustrates the number

of transactions per second (TPS) achieved by PostgreSQL 16 and MySQL 8.0 as the number of concurrent client

threads increases from 1 to 256.

3.1.2. Latency (95th Percentile)

Latency provides a measure of responsiveness. Figure 2 shows the 95th percentile latency for transactions. MySQL

maintained a lower latency up to the 64-thread mark, consistent with its higher throughput. However, as concurrency

increased beyond this point, its latency began to climb sharply. PostgreSQL, while having a slightly higher baseline

latency, exhibited a much more stable and predictable latency profile as the number of concurrent threads increased,

showing only a modest increase even at 256 threads. This suggests that while MySQL is faster under moderate load,

PostgreSQL provides more consistent performance under very high contention.

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER

SCIENCE AND IT INNOVATIONS (IJMCSIT)

https://aimjournals.com/index.php/ijmcsit

pg. 56

Figure 2. 95th Percentile Transaction Latency under the SysBench oltp_read_write Workload. The chart displays the

p95 latency in milliseconds (ms) for PostgreSQL 16 and MySQL 8.0 as concurrent client threads increase.

3.2. Complex Transactional Performance: TPC-C

Workload

The TPC-C benchmark simulates a more realistic and

complex OLTP environment. The results, shown in Table

1, reveal a different performance dynamic.

Table 1. TPC-C Performance Summary (1000 Warehouses, 128 Concurrent Users).

Metric PostgreSQL 16 MySQL 8.0

Throughput (TPS) 1,850 1,620

95th Percentile Latency (ms) 45.2 58.9

CPU Utilization (%) 75% 88%

In this more complex workload, which involves five

different transaction types and enforces referential

integrity across multiple tables, PostgreSQL showed

superior performance. It achieved approximately 14%

higher throughput than MySQL while maintaining a

significantly lower 95th percentile latency. Furthermore,

it accomplished this with lower overall CPU utilization,

suggesting greater efficiency in executing these complex

transactions.

3.3. Analytical Query Performance: TPC-H

Workload

The TPC-H benchmark was used to evaluate the

performance on complex, analytical (OLAP) queries.

The total time taken to complete all 22 queries for the

SF100 dataset is presented in Figure 3.

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER

SCIENCE AND IT INNOVATIONS (IJMCSIT)

https://aimjournals.com/index.php/ijmcsit

pg. 57

Figure 3. Total Execution Time for TPC-H Analytical Workload (SF100). This chart compares the total time in

seconds for PostgreSQL 16 and MySQL 8.0 to complete the full suite of 22 TPC-H queries.

PostgreSQL demonstrated a profound performance

advantage in the OLAP workload, completing the full

suite of 22 queries in approximately one-third of the time

it took MySQL. The total execution time for PostgreSQL

was 1,245 seconds, compared to 3,890 seconds for

MySQL.

A breakdown of individual query times revealed that

PostgreSQL's advantage was particularly pronounced on

queries involving complex joins, subqueries, and large

aggregations (e.g., Q9, Q17, Q18). MySQL struggled

with these operations, with some queries taking several

minutes longer to execute than on PostgreSQL. This

result strongly indicates that PostgreSQL's query planner

and execution engine are significantly more optimized

for complex, decision-support-style queries than

MySQL's.

3.4. Concurrency Scaling and Efficiency

The CPU utilization data collected during the SysBench

tests provides insight into the efficiency of each database.

At 128 threads, where PostgreSQL's throughput was

stable and MySQL's was beginning to show stress,

PostgreSQL's CPU utilization was around 85%, while

MySQL's was close to 95% saturation. This suggests that

MySQL was hitting a resource contention bottleneck,

likely related to its locking mechanisms, while

PostgreSQL still had some headroom, a behavior

consistent with its more efficient concurrency control

model.

4. Discussion

The results presented in the previous section provide a

quantitative foundation for a qualitative discussion of the

performance characteristics of PostgreSQL 16 and

MySQL 8.0. A simple declaration of one database being

"better" than the other would be a gross

oversimplification. Instead, the data clearly supports one

of our core hypotheses: the optimal choice is

fundamentally dependent on the application's workload

profile. This section will interpret the results in the

context of the underlying architectural differences

between the two systems, discuss the practical

implications, and outline the limitations of this study.

4.1. Interpretation of OLTP Performance: Speed vs.

Stability

The SysBench results painted a classic picture of a trade-

off between peak performance and stability under

contention. MySQL's superior throughput at low-to-

moderate concurrency can be attributed to the highly

optimized nature of the InnoDB storage engine for simple

read/write operations. Its design prioritizes speed for the

common operations found in many web applications,

such as key-value lookups and simple updates. However,

the performance plateau and subsequent decline after 64

threads strongly suggest the onset of lock contention.

While InnoDB uses row-level locking, high contention

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER

SCIENCE AND IT INNOVATIONS (IJMCSIT)

https://aimjournals.com/index.php/ijmcsit

pg. 58

on "hot" rows or pages, along with contention on internal

data structures like the buffer pool mutex, can lead to

performance degradation as threads begin to wait for

locks to be released.

In contrast, PostgreSQL's performance, while not

reaching the same peak TPS on this simple workload,

demonstrated remarkable stability. Its linear scaling and

flatter latency curve are direct consequences of its

implementation of Multiversion Concurrency Control

(MVCC). In the MVCC model, read operations do not

acquire locks to see a consistent snapshot of the data;

instead, they see a version of the data that was current at

the beginning of their transaction. This means that

readers do not block writers, and writers do not block

readers. This architectural design significantly reduces

lock contention in mixed read-write workloads, leading

to more predictable performance as concurrency

escalates. The slightly higher overhead of maintaining

multiple row versions explains its lower peak

performance on this specific test but is also the key to its

stability.

The TPC-C results further reinforce this interpretation.

When the workload shifted from simple, single-table

operations to more complex transactions involving

multiple tables and foreign keys, PostgreSQL's more

sophisticated query planner and efficient handling of

complex data structures allowed it to pull ahead. MySQL,

while fast on simple tasks, appeared to incur higher

overhead when coordinating more complex transactional

logic, resulting in lower throughput and higher CPU

usage.

4.2. Architectural Underpinnings of Performance: A

Deeper Analysis

To truly understand the performance disparities observed

in Section 3, we must move beyond surface-level metrics

and dissect the core architectural philosophies that

govern how PostgreSQL and MySQL manage data on

disk, handle concurrent transactions, and execute queries.

These foundational differences in design are not

arbitrary; they reflect historical development priorities

and engineering trade-offs that have profound and

predictable consequences on performance across

different workloads.

4.2.1. The Dichotomy of Data Storage: Clustered vs.

Heap Tables

A fundamental, and perhaps the most significant,

architectural difference lies in how data is physically

organized on disk. MySQL's InnoDB storage engine

employs a clustered index (or index-organized table)

structure, whereas PostgreSQL utilizes a traditional heap

table organization.

In InnoDB, the primary key is not just an index; it dictates

the physical storage order of the data itself. The B-tree

structure of the primary key contains the actual row data

at its leaf nodes. This design has a powerful performance

implication: primary key lookups are exceptionally fast

because, once the index entry is found, the data is already

there. There is no additional I/O step to fetch the row

from a different location. This structure is highly

advantageous for workloads with frequent lookups or

range scans on the primary key, which partly explains

InnoDB's strong performance in the simple SysBench

tests where point selects are common.

However, the clustered index model introduces a critical

trade-off regarding secondary indexes. A secondary

index in InnoDB does not point directly to the physical

location of the row. Instead, it stores the primary key

value for the row it references. Therefore, a query using

a secondary index requires a two-step process: first, a

lookup in the secondary index B-tree to find the primary

key value, and second, a lookup in the primary key's B-

tree to retrieve the actual row data. This can lead to

significant performance overhead, especially if the

primary key is large (e.g., a UUID), as its value is

duplicated in every single secondary index, increasing

storage footprint and memory pressure.

PostgreSQL, in contrast, uses a heap-based storage

model. The rows of a table are stored in an unordered

collection of pages, known as a heap. An index (whether

primary key or secondary) is a separate data structure that

contains pointers—specifically, the tuple ID (ctid), which

is a direct physical address (page number and item

offset)—to the location of the row in the heap file. In this

model, all indexes are functionally secondary; they all

work the same way by providing a direct physical pointer

to the data.

This approach offers greater flexibility. The physical

storage of data is decoupled from its logical ordering,

meaning that the choice of a primary key has no impact

on the size of secondary indexes. Furthermore, retrieving

a row via any index is a consistent two-step process: find

the entry in the index, then follow the ctid pointer to the

heap. While this might be marginally slower for a

primary key lookup compared to InnoDB's ideal case (as

it always requires that second step), it provides more

consistent and predictable performance across all

indexes. This consistency was likely a contributing factor

to PostgreSQL's better performance in the TPC-C

benchmark, where transactions access data through

various keys, not just the primary one.

4.2.2. Concurrency Control Revisited: The Nuances of

MVCC Implementation

While we have established that both databases use

MVCC to facilitate concurrency, their underlying

implementations are markedly different, leading to

distinct operational characteristics and performance

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER

SCIENCE AND IT INNOVATIONS (IJMCSIT)

https://aimjournals.com/index.php/ijmcsit

pg. 59

trade-offs.

PostgreSQL's MVCC implementation is built directly

into its core storage layer. Each row (or "tuple") in the

heap includes header fields, xmin and xmax, which store

the transaction IDs of the transaction that created the row

and the transaction that deleted it, respectively. When a

transaction begins, it takes a snapshot of which

transaction IDs are "in-progress," "committed," or

"aborted." When it scans a table, it examines the xmin

and xmax of each tuple version to determine if that

version is visible to its snapshot. An UPDATE operation

in PostgreSQL is effectively an atomic DELETE and

INSERT; the old tuple is marked as "deleted" by setting

its xmax to the current transaction ID, and a new version

of the tuple is inserted into the heap.

This elegant model means that read operations are truly

non-blocking. However, it creates a significant

maintenance burden: the accumulation of "dead" tuples

from old, deleted, or updated rows. These dead tuples

bloat the table and its indexes, consuming disk space and

slowing down scans. This is where PostgreSQL's

VACUUM process becomes essential. VACUUM is a

background process responsible for reclaiming the space

occupied by dead tuples and making it available for reuse.

If not managed properly, table bloat can severely degrade

performance. This maintenance overhead is a direct

architectural cost of PostgreSQL's MVCC

implementation.

MySQL's InnoDB, on the other hand, implements

MVCC using a different mechanism centered around a

rollback segment (or undo log). Instead of storing

versioning information in the tuple itself, InnoDB

maintains the "current" version of the data in the

clustered index's pages. When a row is updated, the

original data is copied to the undo log before the row is

modified in place. The transaction then holds a pointer to

this "undo record." If another transaction with an earlier

snapshot needs to see the old version of the row, InnoDB

follows the pointers back through the undo log chain to

reconstruct the row as it existed at that point in time.

This approach avoids the table bloat problem seen in

PostgreSQL, as old data versions are segregated in a

dedicated space and the primary table storage remains

relatively compact. However, it introduces its own

performance challenges. Reading old versions of data can

be slow if the transaction has to traverse a long chain of

undo records, which requires additional I/O.

Furthermore, the undo log itself can become a point of

contention, and its management (purging old records) is

a critical background task, analogous to PostgreSQL's

VACUUM. This reliance on modifying data blocks in

place also necessitates a more complex locking system

for writers to prevent conflicts, which, as seen in the

SysBench results, can become a bottleneck under high

write contention. The stability of PostgreSQL at high

concurrency is a testament to its tuple-based versioning,

which avoids much of this in-place modification

contention.

4.2.3. The Query Optimizer's Gauntlet: From

Planning to Execution

The vast performance chasm in the TPC-H analytical

benchmark is almost entirely attributable to the

sophistication and maturity of the respective query

optimizers. A query optimizer's role is to find the most

efficient "execution plan" to retrieve the data requested

by a SQL query. The complexity of this task grows

exponentially with the number of joins and predicates in

a query.

PostgreSQL's query planner is the result of decades of

academic and commercial development, tracing its

lineage back to the Ingres project. It is a highly advanced

cost-based optimizer that considers a wide range of

execution strategies. For joining tables, it can choose

from:

● Nested Loop Join: The simplest method,

effective for joining a small outer table with an indexed

inner table.

● Merge Join: Very efficient for joining two large,

pre-sorted datasets.

● Hash Join: The workhorse for large, unsorted

table joins common in OLAP queries. It builds an in-

memory hash table on the smaller table and then probes

it with rows from the larger table.

PostgreSQL's planner meticulously estimates the cost (in

arbitrary units of CPU and I/O) of each possible plan,

using detailed statistics it maintains about the data

distribution in each table (e.g., histograms, most common

values, null fractions). This allows it to make intelligent

decisions, such as choosing a Hash Join for a multi-

million-row join in a TPC-H query, which is almost

always the optimal strategy. Furthermore, its support for

a diverse set of index types, like BRIN for large,

correlated data and GIN for inverted searches, gives the

planner more tools to work with.

MySQL's query optimizer, while significantly improved

in version 8.0 with features like hash joins, has

historically been less sophisticated, particularly for

complex, multi-table joins. For many years, it relied

almost exclusively on variations of the nested loop join

(the "block nested loop"). While efficient in some OLTP

scenarios, this algorithm performs poorly for the kinds of

large-scale aggregations and joins found in TPC-H.

While MySQL 8.0 can now use hash joins, its cost model

and plan generation are often less adept at navigating the

massive search space of a 7- or 8-table join. The TPC-H

results, where some queries took orders of magnitude

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER

SCIENCE AND IT INNOVATIONS (IJMCSIT)

https://aimjournals.com/index.php/ijmcsit

pg. 60

longer on MySQL, strongly suggest that its optimizer

failed to find plans as efficient as those generated by

PostgreSQL, likely reverting to less optimal join

strategies that resulted in excessive I/O and CPU work.

4.2.4. Data Durability and Write Performance: A Tale

of Two Logs

Finally, the mechanisms ensuring data durability—the 'D'

in the ACID properties —also differ in ways that impact

write performance. Both systems use a Write-Ahead

Logging (WAL) protocol. The principle is that any

change to a data file must first be recorded in a durable

log on disk before the change is written to the data files

themselves. This ensures that in the event of a crash, the

database can replay the log to recover to a consistent

state.

In PostgreSQL, this is managed through the WAL

stream. Transaction commits are made durable by writing

the WAL records to disk and flushing them. The actual

"dirty" data pages in memory are written to disk later by

a background CHECKPOINT process. This decouples

the transaction commit from the main data file I/O,

allowing for fast commit latencies.

MySQL's InnoDB employs a similar concept with its

redo log. The innodb_flush_log_at_trx_commit

parameter is critical here. A setting of 1 (the default for

full ACID compliance, and what we used) forces a flush

of the redo log to disk at every transaction commit. This

is safe but can be a performance bottleneck in write-

intensive workloads, as each commit must wait for a

synchronous disk write. A setting of 2 relaxes this,

flushing only to the OS cache, which is faster but risks

data loss in an OS crash. This parameter provides a direct

knob to trade durability for performance. The

architectural necessity of this synchronous flush for full

durability is a contributing factor to the latency observed

in write-heavy OLTP tests.

These deep architectural distinctions—physical storage,

MVCC implementation, query optimization, and

logging—are not minor details. They are the fundamental

building blocks that dictate the performance profiles we

observed. MySQL's architecture, with its clustered index

and undo-log MVCC, is highly optimized for specific

OLTP patterns but shows strain when workloads deviate

into high contention or analytical complexity.

PostgreSQL's architecture, with its heap storage, in-tuple

versioning, and advanced query planner, presents a more

robust, general-purpose platform that excels in complex

scenarios and maintains stability under heavy concurrent

load, albeit sometimes at the cost of peak performance in

simpler tasks.

4.3. Implications for Practitioners and System

Architects

The findings of this study provide actionable guidance

for technology selection:

● For high-throughput, simple OLTP workloads,

such as those found in content management systems, user

session stores, or certain types of web services, MySQL

remains a formidable choice. Its performance on simple

read/write operations is excellent, and it is often easier to

configure and manage for these specific use cases.

● For applications requiring complex transactional

logic, high data integrity, and mixed workloads that

combine transactions with analytics (often called Hybrid

Transactional/Analytical Processing or HTAP),

PostgreSQL is the clear and superior choice. Its robust

performance on complex queries, coupled with its stable

and predictable behavior under high concurrency, makes

it ideal for financial systems, e-commerce platforms, data

warehousing, and general-purpose enterprise

applications.

● The results underscore the necessity of

workload-specific benchmarking. Relying on generic

performance claims or benchmarks that do not reflect an

application's specific query patterns can lead to poor

technology choices. Organizations should invest in

performance testing using traces of their own production

workloads before making a final decision.

● Tuning is not optional. The performance of both

databases is highly sensitive to configuration. The effort

invested in tuning parameters related to memory

allocation, I/O, and concurrency is critical to extracting

maximum performance from the underlying hardware.

4.4. Limitations and Avenues for Future Research

While this study was designed with rigor, it is important

to acknowledge its limitations.

1. Hardware Specificity: The benchmarks were

conducted on a single, specific hardware configuration.

Performance characteristics can vary on different

hardware, particularly with respect to CPU architecture

and storage subsystems.

2. Workload Standardization: While standard

benchmarks like TPC-C and TPC-H are used, they may

not perfectly represent every possible real-world

workload.

3. Tuning Expertise: While we followed best

practices for tuning, a world-class expert specializing in

one database might be able to extract further

performance. Our tuning represents a competent, but not

exhaustive, effort.

4. Scope: This study was limited to PostgreSQL

and MySQL. Future research could expand this

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER

SCIENCE AND IT INNOVATIONS (IJMCSIT)

https://aimjournals.com/index.php/ijmcsit

pg. 61

comparison to include other popular relational databases

or even contrast them with leading NoSQL or NewSQL

systems.

5. Cloud Environments: The performance

dynamics on managed cloud database services (e.g.,

Amazon RDS, Google Cloud SQL) could differ due to

virtualization overhead, network I/O, and platform-

specific optimizations. A comparative study in a cloud

context would be a valuable follow-up.

Future work could also explore the performance of

specific features, such as PostgreSQL's full-text search

capabilities, geospatial functions, or the performance of

different replication and high-availability setups for each

database.

5. Conclusion

This study set out to provide a contemporary, empirical

benchmark of PostgreSQL 16 and MySQL 8.0,

addressing a gap in the literature concerning their

performance on modern hardware across a spectrum of

standardized workloads. The results confirm that the

long-standing debate between these two database titans

cannot be settled with a simple verdict. Instead,

performance is a multi-faceted issue, deeply intertwined

with application-specific workload characteristics.

Our key findings demonstrate a clear trade-off. MySQL

excels in scenarios defined by high-volume, simple

transactional operations, where its optimized storage

engine delivers superior raw throughput. However, this

advantage diminishes under heavy concurrent load and

complex transactional logic. PostgreSQL, conversely,

establishes itself as the more versatile and robust system.

Its architectural design, centered on a sophisticated

MVCC implementation and a world-class query

optimizer, provides exceptional stability under

contention and a commanding performance advantage in

complex analytical queries.

For developers, architects, and decision-makers, the

central takeaway is the imperative of workload-centric

evaluation. The choice between PostgreSQL and MySQL

should be a deliberate one, guided not by general

reputation but by a rigorous analysis of an application's

specific data access patterns. This research provides a

foundational dataset and architectural context to inform

that critical decision, ultimately enabling the construction

of more performant, scalable, and reliable data-driven

systems.

References

1. Yao, S. B., Hevner, A. R., & Young-Myers, H.

(1987). Analysis of database system

architectures using benchmarks. IEEE

Transactions on Software Engineering, SE-13,

709–725.

2. Bonthu, C., Kumar, A., & Goel, G. (2025).

Impact of AI and machine learning on master

data management. Journal of Information

Systems Engineering and Management,

10(32s), 46–62.

https://doi.org/10.55278/jisem.2025.10.32s.46

3. Heck, W. (2009). Using MySQL in your

organisation. In Proceedings of the

INTED2009, IATED, Valencia, Spain, 9–11

March 2009; pp. 3686–3694.

4. Shaik, B., & Vallarapu, A. (2018). Beginning

PostgreSQL on the Cloud: Simplifying

Database as a Service on Cloud Platforms.

Apress: New York, NY, USA.

5. Reddy Gundla, S. (2025). PostgreSQL tuning

for cloud-native Java: Connection pooling vs.

reactive drivers. International Journal of

Computational and Experimental Science and

Engineering, 11(3).

https://doi.org/10.22399/ijcesen.3479

6. Comer, D. (1979). Ubiquitous B-tree. ACM

Computing Surveys (CSUR), 11, 121–137.

7. Han, R., John, L. K., & Zhan, J. (2018).

Benchmarking Big Data Systems: A Review.

IEEE Transactions on Services Computing, 11,

580–597.

8. Stonebraker, M., Rowe, L. A., & Hirohama, M.

(1990). The implementation of POSTGRES.

IEEE Transactions on Knowledge and Data

Engineering, 2, 125–142.

9. Nagaraj, V. (2025). Ensuring low-power design

verification in semiconductor architectures.

Journal of Information Systems Engineering

and Management, 10(45s), 703–722.

https://doi.org/10.52783/jisem.v10i45s.8903

10. Almeida, D. (2023). Performance Comparison

of Redis, Memcached, MySQL, and

PostgreSQL: A Study on Key-Value and

Relational Databases. In Proceedings of the

2023 Second International Conference On

Smart Technologies For Smart Nation

(SmartTechCon), Singapore, 18–19 Aug 2023;

pp. 902–907.

11. Lulla, K. L., Chandra, R. C., & Sirigiri, K. S.

(2025). Proxy-based thermal and acoustic

evaluation of cloud GPUs for AI training

workloads. The American Journal of Applied

Sciences, 7(7), 111–127.

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER

SCIENCE AND IT INNOVATIONS (IJMCSIT)

https://aimjournals.com/index.php/ijmcsit

pg. 62

https://doi.org/10.37547/tajas/Volume07Issue0

7-12

12. Salunke, S. V., & Ouda, A. (2023). Ensemble

Learning to Enhance Continuous User

Authentication For Real World Environments.

In Proceedings of the 2023 IEEE International

Black Sea Conference on Communications and

Networking (BlackSeaCom), Istanbul, Türkiye,

4–7 Jul 2023; pp. 102–108.

13. Rangu, S. (2025). Analyzing the impact of AI-

powered call center automation on operational

efficiency in healthcare. Journal of Information

Systems Engineering and Management,

10(45s), 666–689.

https://doi.org/10.55278/jisem.2025.10.45s.666

14. Weng, S., Wang, Q., Qu, L., Zhang, R., Cai, P.,

Qian, W., & Zhou, A. (2024). Lauca: A

Workload Duplicator for Benchmarking

Transactional Database Performance. IEEE

Transactions on Knowledge and Data

Engineering, 36, 3180–3194.

15. Ciolli, G., Mejías, B., Angelakos, J., Kumar, V.,

& Riggs, S. (2023). PostgreSQL 16

Administration Cookbook. Packt Publishing

Ltd.: Birmingham, UK.

16. Bartunov, O., & Sigaev, T. (2024). Full-Text

Search in PostgreSQL. PostgreSQL

Documentation. Retrieved October 17, 2024,

from

https://www.postgresql.org/docs/current/textse

arch.html

17. Reddy Dhanagari, M. (2025). Aerospike: The

key to high-performance real-time data

processing. Journal of Information Systems

Engineering and Management, 10(45s), 513–

531.

https://doi.org/10.55278/jisem.2025.10.45s.513

18. Tongkaw, S., & Tongkaw, A. (2016). A

comparison of database performance of

MariaDB and MySQL with OLTP workload. In

Proceedings of the 2016 IEEE Conference on

Open Systems (ICOS), Langkawi, Malaysia,

10–12 Oct 2016; pp. 117–119.

19. Edrah, M., & Ouda, A. (2024). Enhanced

Security Access Control Using Statistical-

Based Legitimate or Counterfeit Identification

System. Computers, 13, 159.

20. Bonthu, C., & Goel, G. (2025). Autonomous

supplier evaluation and data stewardship with

AI: Building transparent and resilient supply

chains. International Journal of Computational

and Experimental Science and Engineering,

11(3). https://doi.org/10.22399/ijcesen.3854

21. Bansal, P., & Ouda, A. (2022). Study on

integration of FastAPI and machine learning for

continuous authentication of behavioral

biometrics. In Proceedings of the 2022 ISNCC,

Shenzhen, China, 19–22 Jul 2022; pp. 1–6.

22. Barham, P., Dragovic, B., Fraser, K., Hand, S.,

Harris, T., Ho, A., Neugebauer, R., Pratt, I., &

Warfield, A. (2003). Xen and the art of

virtualization. ACM SIGOPS Operating

Systems Review, 37, 164–177.

23. Salunke, S., Ouda, A., & Gagne, J. (2022).

Transfer Learning for Behavioral Biometrics-

based Continuous User Authentication. In

Proceedings of the 2022 ISNCC, Shenzhen,

China, 19–22 Jul 2022; pp. 1–6.

24. Han, J., Haihong, E., Le, G., & Du, J. (2011).

Survey on NoSQL database. In Proceedings of

the 6th International Conference on Pervasive

Computing and Applications, Port Elizabeth,

South Africa, 26–28 Oct 2011; pp. 363–366.

25. Durgam, S. (2025). CICD automation for

financial data validation and deployment

pipelines. Journal of Information Systems

Engineering and Management, 10(45s), 645–

664.

https://doi.org/10.52783/jisem.v10i45s.8900

26. Kaur, K., & Sachdeva, M. (2017). Performance

evaluation of NewSQL databases. In

Proceedings of the 2017 International

Conference on Inventive Systems and Control

(ICISC), Coimbatore, India, 19–20 Jan 2017;

pp. 1–5.

27. Murach, J. (2019). Murach’s MySQL (3rd ed.).

Mike Murach Associates: Fresno, CA, USA.

28. Seghier, N. B., & Kazar, O. (2021).

Performance benchmarking and comparison of

NoSQL databases: Redis vs MongoDB vs

Cassandra using YCSB tool. In Proceedings of

the 2021 ICRAMI, Tebessa, Algeria, 21–22 Sep

2021; pp. 1–6.

29. Armenatzoglou, N., Basu, S., Bhanoori, N., Cai,

M., Chainani, N., Chinta, K., Govindaraju, V.,

Green, T. J., Gupta, M., Hillig, S., et al. (2022).

Amazon Redshift re-invented. In Proceedings

of the 2022 International Conference on

Management of Data, Paphos, Cyprus, 12–17

Jun 2022; pp. 2205–2217.

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER

SCIENCE AND IT INNOVATIONS (IJMCSIT)

https://aimjournals.com/index.php/ijmcsit

pg. 63

30. Reddy Dhanagari, M. (2025). Aerospike vs.

traditional databases: Solving the speed vs.

consistency dilemma. International Journal of

Computational and Experimental Science and

Engineering, 11(3).

https://doi.org/10.22399/ijcesen.3780

31. Aref, Y., & Ouda, A. (2024). HSM4SSL:

Leveraging HSMs for Enhanced Intra-Domain

Security. Future Internet, 16, 148.

32. Bog, A., Kruger, J., & Schaffner, J. (2008). A

composite benchmark for online transaction

processing and operational reporting. In

Proceedings of the 2008 IEEE Symposium on

Advanced Management of Information for

Globalized Enterprises (AMIGE), Tianjin,

China, 28–29 Sep 2008; pp. 1–5.

33. Ramsey, P. (2022). Postgres Indexing: When

Does BRIN Win? Crunchy Data. Retrieved Oct

13 2024 from

https://www.crunchydata.com/blog/postgres-

indexing-when-does-brin-win

34. Bernstein, P. A., & Goodman, N. (1983).

Multiversion concurrency control—Theory and

algorithms. ACM Transactions on Database

Systems (TODS), 8, 465–483.

35. Zhou, G., Huang, L., Li, Z., Tian, H., Zhang, B.,

Fu, M., Feng, Y., & Huang, C. (2021). Intever

Public Database for Arcing Event Detection:

Feature Analysis, Benchmark Test, and Multi-

Scale CNN Application. IEEE Transactions on

Instrumentation and Measurement, 70,

3518515.

36. Kubernetes, T. (2019). Kubernetes. Retrieved

May 24, 2019, from Kubernetes.io

37. Abreha, T., & Reuter, A. (1983). Principles of

transaction-oriented database recovery. ACM

Computing Surveys (CSUR), 15, 287–317.

38. Callaghan, M. (2024). MySQL and Postgres vs

the Insert Benchmark on a Large Server.

Retrieved Oct 13 2024 from

https://smalldatum.blogspot.com/2024/09/mys

ql-and-postgres-vs-insert-benchmark.html

39. Reddy Gundla, S. (2025). PostgreSQL tuning

for cloud-native Java. International Journal of

Computational and Experimental Science and

Engineering, 11(3).

https://doi.org/10.22399/ijcesen.3479

40. Kenler, E., & Razzoli, F. (2015). MariaDB

Essentials. Packt Publishing Ltd.: Birmingham,

UK.

41. Filip, P., & Cegan, L. (2020). Comparison of

MySQL and MongoDB with focus on

performance. In Proceedings of the 2020

ICIMCIS, Jakarta, Indonesia, 19–20 Nov 2020;

pp. 184–187.

42. Sabharwal, N., & Edward, S. G. (2019). Hands

on Google Cloud SQL and Cloud Spanner.

Apress: New York, NY, USA.

43. Hellerstein, J. M., Naughton, J. F., & Pfeffer, A.

(1995). Generalized Search Trees for Database

Systems. University of Wisconsin–Madison,

Department of Computer Sciences.

44. A Brief History of PostgreSQL. (2018). In

PostgreSQL Documentation. The PostgreSQL

Global Development Group: Athens, Greece.

45. Srilatha, S. (2025). Integrating AI into

enterprise content management systems: A

roadmap for intelligent automation. Journal of

Information Systems Engineering and

Management, 10(45s), 672–688.

https://doi.org/10.52783/jisem.v10i45s.8904

https://aimjournals.com/index.php/ijmcsit

